Operator`s manual
Table Of Contents
- 1.0 Introduction
- 2.0 Specifications
- 2.1 DC Voltage Measurement
- 2.2 DC Current Measurement
- 2.3 Resistance Measurements
- 2.4 AC Voltage Measurements
- 2.5 AC Current Measurement, True RMS
- 2.6 Leakage Measurement (SMU2064)
- 2.7 RTD Temperature Measurement
- 2.8 Thermocouple Temperature Measurement
- 2.9 Additional Component Measurement Capability
- 2.10 Time Measurements
- 2.11 Trigger Functions
- 2.12 Measurement Times
- 2.12.1 Measurement Apertures and Read Interval
- 2.12.2 Range and Function Transition Times
- Range switching within Volts DC, using DMMSetRange()
- Range switching in Resistance (2-W or 4-W), using DMMSetRange()
- Switching between VDC and Resistance, using DMMSetFuncRange()
- Switching between Ohms and IDC, using DMMSetFuncRange()
- Switching between VDC and Capacitance, using DMMSetFuncRange()
- Switching between Ohms and Capacitance, using DMMSetFuncRange()
- Switching ranges within DC Current using DMMSetRange()
- Switching Capacitance ranges using DMMSetRange()
- 2.13 Source Functions (2064)
- 2.14 Accuracy Notes
- 2.15 Other Specifications
- 3.0 Getting Started
- 4.0 DMM Operation and Measurements Tutorial
- 4.1 Voltage Measurement
- 4.2 Current Measurements
- 4.3 Resistance Measurements
- 4.3.1 2-Wire Ohm Measurements
- 4.3.2 4-Wire Ohm Measurements
- 4.3.3 Using Offset Ohms function (SMU2064)
- 4.3.4 6-wire Guarded Resistance Measurement (SMU2064)
- 4.3.5 Extended Resistance Measurements (SMU2064)
- 4.3.6 Effects of Thermo-Voltaic Offset
- 4.3.7 Guarding High Value Resistance Measurements (SMU2064)
- 4.4 Leakage Measurements (SMU2064)
- 4.5 Anatomy of measurement timing
- 4.6 RTD Temperature Measurement (SMU2064)
- 4.7 Internal Temperature (SMU2064)
- 4.8 Diode Characterization
- 4.9 Capacitance Measurement, Charge Balance method
- 4.10 In-Circuit Capacitance Measurement (SMU2064)
- 4.11 Measuring the resistance in a series RC network (2064)
- 4.12 Inductance Measurement (SMU2064)
- 4.13 Characteristic Impedance Measurement (SMU2064)
- 4.14 Trigger Operation
- 4.15 Time and Frequency Measurements
- 4.16 Source Functions (2064)
- 4.17 Interfacing to an external device
- 4.18 Measuring Thermocouples’ Temperature
- 4.19 Auxiliary VDC inputs (2064)
- 5.0 Windows Interface
- 5.1 Distribution Files
- 5.2 Using the SMU2060 Driver With C++ or Similar Software
- 5.3 Visual Basic DMM Panel Application
- 5.4 Windows DLL Default Modes and Parameters
- 5.5 Using the SMU2060 DLL with LabWindows/CVI
- 5.6 Windows Command Language
- DMMArmAnalogTrigger
- DMMArmTrigger
- DMMBurstBuffRead
- DMMBurstRead
- DMMCalibrate
- DMMCleanRelay
- DMMClearMinMax
- DMMCloseUSB
- DMMDelayedTrigger
- DMMDisableTrimDAC
- DMMDisarmTrigger
- DMMDutyCycleStr
- DMMErrString
- DMMFrequencyStr
- DMMGetACCapsR
- DMMGetAperture
- DMMGetAverageVAC
- DMMGetBufferSize
- DMMGetBusInfo
- DMMGetCalDate
- DMMGetdB
- DMMGetdBStr
- DMMGetCJTemp
- DMMGetCounterRange
- DMMGetDeviation
- DMMGetDeviatStr
- DMMGetDevLocation
- DMMGetDiffMnMxStr
- DMMGetFuncRange
- DMMGetFunction
- DMMGetGrdVer
- DMMGetHwVer
- DMMGetHwOption
- DMMGetID
- DMMGetLowFreqVRMS
- DMMGetManDate
- DMMGetMax
- DMMGetMaxStr
- DMMGetMin
- DMMGetMinStr
- DMMGetNumDevices
- DMMGetRange
- DMMGetReadInterval
- DMMGetSourceFreq
- DMMGetStoredReading
- DMMGetSourceMode
- DMMGetTCType
- DMMGetTrigger
- DMMGetTriggerInfo
- DMMGetType
- DMMGetVer
- DMMInit
- DMMIsAutoRange
- DMMIsInitialized
- DMMIsRelative
- DMMLongTrigger
- DMMLongTrigRead
- DMMOpenCalACCaps
- DMMOpenTerminalCal
- DMMOpenUSB
- DMMOutputSync
- DMMPeriodStr
- DMMQuickInit
- DMMRead
- DMMReadBuffer
- DMMReadBufferStr
- DMMReadCJTemp
- DMMReadCrestFactor
- DMMReadDutyCycle
- DMMReadSR
- DMMReadFrequency
- DMMReadHiLoSense
- DMMReadHiSense
- DMMReadInductorQ
- DMMReadInductorR
- DMMReadLoSense
- DMMReadMeasurement
- DMMReadMedian
- DMMReadNorm
- DMMReadNsamples
- DMMReadPeakToPeak
- DMMReadPeriod
- DMMReadStr
- DMMReadTestV
- DMMReadTotalizer
- DMMReadWidth
- DMMReady
- DMMSetACCapsDelay
- DMMSetACCapsLevel
- DMMSetACVSource
- DMMSetAperture
- DMMSetAutoRange
- DMMSetBuffTrigRead
- DMMSetCapsAveSamp
- DMMSetCJTemp
- DMMSetCompThreshold
- DMMSetCounterRng
- DMMSetDCISource
- DMMSetDCVSource
- DMMSetFastRMS
- DMMSetFuncRange
- DMMSetFunction
- DMMSetInductFreq
- DMMSetOffsetOhms
- DMMSetPLC
- DMMSetPulseGen
- DMMSetRange
- DMMSetReadInterval
- DMMSetReference
- DMMSetRelative
- DMMSetRTD
- DMMSetSensorParams
- DMMSetSourceMode
- DMMSetSourceRes
- DMMSetSync
- DMMSetTCType
- DMMSetTempUnits
- DMMSetTrigPolarity
- DMMSetTrigRead
- DMMSetTrimDAC
- DMMStartTotalizer
- DMMStopTotalizer
- DMMTerminate
- DMMTrigger
- DMMTriggerBurst
- DMMUnlockCounter
- DMMWaitForTrigger
- DMMWidthStr
- 5.7 Calibration and Service Commands
- 5.8 Service Commands
- 5.9 Error Codes
- 5.10 Warning Codes
- 5.11 Parameter List
- 6.0 Maintenance
- 7.0 Warranty and Service
- 8.0 Accessories
Signametrics 34
4.0 DMM Operation and Measurements Tutorial
Most of the DMM’s measurement functions are accessible from the Windows Control Panel (Figure
above). All of the functions are included in the Windows DLL driver library. To gain familiarity with the
SMU2060 series DMM’s, run the Windows ‘SETUP.EXE’ to install the software, then run the DMM, as
described in the previous section. This section describes in detail the DMM’s operation and measurement
practices for best performance.
4.1 Voltage Measurement
Measures from 0.1 V to 330 VDC or 250 VAC. Use the V,2 + and V, 2 - terminals, being certain to
always leave the I,4+ and I,4- and DIN-7 terminals disconnected. Use the AC/DC button on the
Control Panel to switch between AC and DC.
Making Voltage Measurements is straightforward. The following tips will allow you to make the most
accurate voltage measurements.
4.1.1 DC Voltage Measurements
When making very low-level DCV measurements (<1 mV), you should first place a copper wire shorting
plug across the V, 2 + and V, 2 - terminals and perform Relative function to eliminate zero errors
before making your measurements. A common source of error can come from your test leads, which can
introduce several Volts of error due to thermal voltages. To minimize thermal voltaic effects, after
handling the test leads; you should wait a few seconds before making measurements. Signametrics offers
several high quality probes that are optimal for low-level measurements.
Note: The front panel powers up in DCV, 0.5s aperture, 240 V range. If the DMM is operated in
Autorange, with an open input, The DMM will keep changing ranges. This is perfectly normal with ultra
high impedance DMM’s such as the SMU2060. The virtually infinite input impedance of the 240 mV and
2.4 V DCV ranges causes this phenomenon. On these ranges, an open input will read whatever charge is
associated with the signal conditioning of the DMM. As this electrical charge accumulates, the
SMU2060 will change ranges.
4.1.2 True RMS AC Voltage Measurements
ACV is specified for signals greater than 1mV, from 10 Hz to 100 kHz. The ACV function is AC
coupled, and measures the true RMS value of the waveform. As with virtually all true-RMS measuring
meters, the DMM may not read a perfect zero with a shorted input. This is normal.
In ACV measurements it is important to conenct NEUTRAL or GROUND signal being measured to the
DMM’s V,2 - terminal. This prevents any “Common Mode” problems from occurring (Common Mode
refers to floating the DMM V,2- voltage referenced to Earth Ground.) Common Mode problems can
result in noisy readings, or even cause the PC to hang-up under high V X Hz input conditions. In many
systems, grounding the source to be measured at Earth Ground (being certain to avoid any ground loops)
can give better results.
The settling time and low frequency limits of the RMS functions (AC Voltage and current) are effected
by the state of the Fast RMS control circuit. This function is off as a default. When Fast RMS is selected
(see
DMMSetFastRMS), the RMS settling time is about 10 times faster, but the low frequency cutoff point
is increased significantly. For minimum error engage the Fast RMS at signals frequencies higher than
400Hz. Using the Read Interval (DMMSetReadInterval) in conjunction with aperture
(DMMSetAperture) will facilitate accurate control over the settling and measuring times. For instance,
when measuring 1.5V 1kHz signal using the 2.4V ACV range, optimize speed by setting the DMM for
Fast RMS, set Aperture to 66.6ms and the Read Interval to 116.6ms. This will provide the required RMS
processing time of 50ms.