Preface SIMATIC S7-400 S7-400 Automation System Module Data SIMATIC S7-400 S7-400 Automation System Module Data Reference Manual 1 General specifications ______________ 2 Rack ______________ 3 Power supply modules ______________ 4 Digital modules ______________ 5 Analog modules ______________ 6 Interface modules ______________ 7 S5 interface IM 463-2 ______________ PROFIBUS DP master interface IM 467/IM 467 FO 8 ______________ Cable duct and fan subassemblies 9 ______________ 10 RS 485 repeater ________
Legal information Legal information Warning notice system This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.
Preface Purpose of this manual The information contained in this manual can be used as a reference for operating, for descriptions of the functions, and for the specifications of the signal modules, power supply modules and interface modules of the S7-400. How to configure, assemble and wire these modules in an S7-400 system is described in the installation manuals for each system. Basic knowledge required This manual requires general knowledge of automation engineering.
Preface Position in the information landscape This manual forms part of the S7-400 documentation. System S7-400 Documentation package S7-400 automation system, installation S7-400 automation system, module specifications S7-400 automation system, CPU specifications S7-400 instruction list Further Information You can find further and additional information on the topics in this manual in the following manuals: Programming with STEP 7 (http://support.automation.siemens.
Preface Technical support You can reach the technical support for all SIMATIC products Through the Support Request web form http://www.siemens.de/automation/support-request Phone: + 49 180 5050 222 By fax: + 49 180 5050 223 For further information about Siemens Technical Support, refer to the Internet at http://www.siemens.de/automation/service Service & Support on the Internet In addition to our documentation, we offer a comprehensive knowledge base online on the Internet at: http://www.siemens.
Preface 6 S7-400 Automation System Module Data Reference Manual, Edition 09/2009, A5E00850736-06
Table of contents Preface ...................................................................................................................................................... 3 1 2 3 General specifications ............................................................................................................................. 21 1.1 Standards, certificates and approvals..........................................................................................21 1.2 Electromagnetic compatibility .
Table of contents 4 8 3.16 Power supply module PS 405 20A (6ES7405-0RA01-0AA0)..................................................... 89 3.17 Power supply module PS 405 20A (6ES7405-0RA02-0AA0)..................................................... 91 Digital modules ........................................................................................................................................ 93 4.1 Module overview ................................................................................
Table of contents 5 Analog modules ..................................................................................................................................... 179 5.1 General information ...................................................................................................................179 5.2 Module overview ........................................................................................................................180 5.3 Steps for commissioning analog modules ..
Table of contents 6 7 10 5.21.1 5.21.2 5.21.3 Features .................................................................................................................................... 274 Commissioning the SM 431; AI 8 x 14 Bit................................................................................. 279 Measuring methods and measuring ranges of SM 431; AI 8 x 14 Bit ...................................... 281 5.22 5.22.1 5.22.2 5.22.
Table of contents 8 9 10 A B C PROFIBUS DP master interface IM 467/IM 467 FO .............................................................................. 377 8.1 8.1.1 8.1.2 PROFIBUS DP master interface IM 467/IM 467 FO..................................................................377 Overview ....................................................................................................................................377 Indicators and the mode selector....................................
Table of contents D E Directive on handling electrostatic sensitive devices (ESD)................................................................... 447 D.1 ESD: What are the directives for handling electrostatic sensitive devices? ............................. 447 D.2 Electrostatic charging of persons.............................................................................................. 448 D.3 Basic protective measures against electrostatic discharge ........................................
Table of contents Table 4- 6 Diagnostic messages of the digital modules..............................................................................100 Table 4- 7 Diagnostic messages of the digital modules, causes of errors and remedies...........................101 Table 4- 8 Parameters of SM 421; DI 16 x DC 24 V...................................................................................
Table of contents Table 5- 26 Representation of analog values for thermocouples type L...................................................... 198 Table 5- 27 Representation of analog values for thermocouples type N ..................................................... 198 Table 5- 28 Representation of analog values for thermocouple types R, S................................................. 199 Table 5- 29 Representation of analog values for thermocouples type T ......................................
Table of contents Table 5- 58 Parameters of the SM 431; AI 16 x 13 Bit .................................................................................290 Table 5- 59 Selection of the measuring method for channel n and channel n+1 of the SM 431; AI 16 x 13 Bit..............................................................................................................................291 Table 5- 60 Measuring ranges of the SM 431; AI 16 x 13 Bit ........................................................
Table of contents Table 7- 4 Switch position: Cable length selector of the IM 463-2............................................................. 365 Table 7- 5 Settings of the IM 314 using expansion units ........................................................................... 368 Table 7- 6 Settings address areas on the IM 314 ...................................................................................... 369 Table 7- 7 Pin assignments of the 721 cable ....................................
Table of contents Table B- 20 Diagnostic byte for a channel of the SM 431; AI 16 x 16 bit......................................................437 Table B- 21 Bytes 2 and 3 of the diagnostic data of the SM 431; AI 8 x RTD x 16 bit..................................437 Table B- 22 Bytes 4 to 7 of the diagnostic data of the SM 431; AI 8 x RTD x 16 bit.....................................438 Table B- 23 Even diagnostic byte for a channel of the SM 431; AI 8 x RTD x 16 bit ...............................
Table of contents Figure 4-5 Wiring diagram of the SM 421; DI 16 x AC 120 ........................................................................ 121 Figure 4-6 Wiring and Block Diagram of the SM 421; DI 16 x UC 24/60 V................................................ 125 Figure 4-7 Circuit as for active high or active low input.............................................................................. 129 Figure 4-8 Wiring and block diagram of the SM 421; DI 16 x UC 120/230 V....................
Table of contents Figure 5-19 4-conductor connection of loads to a voltage output of an electrically isolated analog output module ............................................................................................................................239 Figure 5-20 2-conductor connection of loads to a voltage output of an electrically isolated analog output module ............................................................................................................................
Table of contents Figure 7-2 Connection variant for CCs and EUs via the IM 463-2 and IM 314.......................................... 371 Figure 8-1 Configuration of the IM 467/467 FO.......................................................................................... 378 Figure 8-2 LEDs of the IM 467/467 FO ...................................................................................................... 380 Figure 8-3 Connecting the bus connector to the IM 467 ............................
General specifications 1.1 1 Standards, certificates and approvals Information on the type plate Note You will find the current approvals on the type plate of the respective product. WARNING Open Equipment Death, serious injury or substantial material damage can occur. S7 400 modules are classified as open equipment, This means that the S7 400 should only be installed in an enclosure or cabinet.
General specifications 1.1 Standards, certificates and approvals The EC Declarations of Conformity are available to the relevant authorities at the following address: Siemens Aktiengesellschaft Industry Sector I IA AS RD ST P.O. Box 1963 D-92209 Amberg These files are also available for download on the Customer Support Internet pages, under "Declaration of Conformity". EMC directive SIMATIC products are designed for industrial applications.
General specifications 1.1 Standards, certificates and approvals Note In the new releases, some of the devices listed above fulfill the requirements of the explosion protection guidelines instead of those of the low-voltage directive. Please note the information on the type plate.
General specifications 1.1 Standards, certificates and approvals CSA certification CSA certification Canadian Standard Association (CSA) to Standard C 22.2 No. 142: ● Certification Record 212191-0-000 or cULus approval Underwriters Laboratories Inc., to ● UL 508 (Industrial Control Equipment) ● CSA C22.2 No. 142 (Process Control Equipment) or cULus approval, Hazardous Location +$= /2& CULUS Listed 7RA9 INT. CONT. EQ. FOR HAZ. LOC. Underwriters Laboratories Inc.
General specifications 1.1 Standards, certificates and approvals or cULus Approvals, Hazardous Location for Relay Modules +$= /2& CULUS Listed 7RA9 INT. CONT. EQ. FOR HAZ. LOC. Underwriters Laboratories Inc., complying with ● UL 508 (Industrial Control Equipment) ● CSA C22.2 No. 142 (Process Control Equipment) ● UL 1604 (Hazardous Location) ● CSA-213 (Hazardous Location) APPROVED for Use in ● Cl. 1, Div. 2, GP. A, B, C, D T4A ● Cl. 1, Zone 2, GP. IIC T4 ● Cl.
General specifications 1.1 Standards, certificates and approvals CuULu requirements for hazardous location on the battery power supply for CPUs The power supply to the backup battery of a CPU must be via a fire-resistant plug. The figure below portrays the concept of such connection. 1 2 (1) Battery or voltage supply (2) CPU with "Ext. Batt.
General specifications 1.1 Standards, certificates and approvals Example The Varta 4022 battery together with a 1.5 m long cable and a Leonhardy 02-02.1500 plug meet these conditions. FM Approval Factory Mutual Approval Standard Class Number 3611, Class I, Division 2, Group A, B, C, D. Temperature class: T4 at 60° C ambient temperature WARNING Personal injury or property damage can result.
General specifications 1.1 Standards, certificates and approvals Safety requirements for installation The S7-400 programmable controllers are "open type" equipment to the IEC 61131-2 standard and therefore adhere to the EU directive 2006/95/EC "Low-Voltage Directive" and are UL/CSA certified as such.
General specifications 1.2 Electromagnetic compatibility 1.2 Electromagnetic compatibility Introduction In this section you will find details of the noise immunity of S7-400 modules and details of radio interference suppression. All the components of S7-400 automation system meet the requirements of the standards that apply in Europe provided they are installed in accordance with all the appropriate regulations (see Installation Manual, Chapters 2 and 4).
General specifications 1.2 Electromagnetic compatibility Sinusoidal interference The table below shows the EMC behavior of the S7-400 modules with regard to sinusoidal interference. Table 1- 4 Sinusoidal interference Sinusoidal interference Test values Degree of severity HF irradiation (electromagnetic fields) 80 MHz to 1 GHz and 1.
General specifications 1.2 Electromagnetic compatibility System perturbation The S7-400 AC Power Supply Modules fulfill the requirements of the following standards for system perturbation: Harmonic current: EN 61000-3-2 Voltage fluctuations and flicker: EN 61000-3-3 Additional measures If you want to connect an S7-400 system to the public network, you must ensure Limit Value Class B in accordance with EN 55022.
General specifications 1.3 Shipping and storage conditions for modules and backup batteries 1.3 Shipping and storage conditions for modules and backup batteries Shipping and storage of modules S7-400 modules surpass the requirements of IEC 61131-2 with respect to shipping and storage requirements. The following details apply to modules shipped and/or stored in their original packing. Climatic conditions correspond to IEC 60721-3-3, Class 3K7 for storage and IEC 60721-3-2, Class 2K4 for transportation.
General specifications 1.3 Shipping and storage conditions for modules and backup batteries WARNING Risk of injury, material damage, release of hazardous substances. Lithium batteries can explode if handled improperly. Their improper disposal may result in the release of hazardous substances. Strictly adhere to the following instructions: Do not throw a new or low battery into an open fire and do not perform any soldering work on the cell casing (max. temperature 100° C).
General specifications 1.4 Mechanical and ambient conditions for S7-400 operation 1.4 Mechanical and ambient conditions for S7-400 operation Operating conditions S7-400 systems are designed for stationary use in weather-proof locations.
General specifications 1.4 Mechanical and ambient conditions for S7-400 operation Testing mechanical ambient conditions The table below provides important information with respect to the type and scope of testing of mechanical ambient conditions. Table 1- 9 Test for mechanical ambient conditions Condition tested Vibrations Test standard Vibration test in accordance with IEC 60068-2-6 (sinusoidal) Remarks Type of vibration: frequency sweeps with a rate of change of 1 octave/minute.
General specifications 1.5 Information on insulation tests, protection class and degree of protection 1.
2 Rack 2.1 Function and design of the racks Introduction The racks for the S7-400 have the following functions: ● They physically hold the modules. ● They supply the modules with operating voltage. ● They connect the individual modules to each other via the signal busses.
Rack 2.1 Function and design of the racks 1 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 3 4 (1) Mounting rail (2) Plastic parts (3) Bus connector (covered when shipped) (4) Connection for local ground Figure 2-1 Configuration of a rack with 18 slots UL/CSA note Special requirements should be taken into consideration in the area of influence of the UL/CSA; these may be fulfilled by installing the system in a cabinet.
Rack 2.2 The racks UR1 (6ES7400-1TAx1-0AA0) and UR2 (6ES7400-1JAx1-0AA0) 2.2 The racks UR1 (6ES7400-1TAx1-0AA0) and UR2 (6ES7400-1JAx10AA0) Order number The "x" variable has the following meaning for order numbers 6ES7400-1TAx1-0AA0 and 6ES7400-1JAx1: ● x=0: Mounting rail made of sheet steel ● x=1: Mounting rail made of aluminum Introduction The UR1 and UR2 racks are used for assembling central racks and expansion racks. The UR1 and UR2 racks have both an I/O bus and a communication bus.
Rack 2.2 The racks UR1 (6ES7400-1TAx1-0AA0) and UR2 (6ES7400-1JAx1-0AA0) Specifications of the UR1 and UR2 racks Rack UR1 6ES7 400-1TA010AA0 UR1 6ES7 400-1TA110AA0 UR2 6ES7 400-1JA010AA0 UR2 6ES7 400-1JA110AA0 Number of single-width slots 18 18 9 9 Dimensions W x H x D (mm) 482.5x 290 x 27.5 482.5x 290 x 27.5 257.5x 290 x 27.5 257.5x 290 x 27.
Rack 2.3 UR2-H Rack 6ES7400-2JAx0-0AA0) 2.3 UR2-H Rack 6ES7400-2JAx0-0AA0) Order number The "x" variable has the following meaning for order number 6ES7400-2JAx0-0AA0: ● x=0: Mounting rail made of sheet steel ● x=1: Mounting rail made of aluminum Introduction The UR2-H rack is used for assembling two central racks or expansion racks in one rack. The UR2-H rack essentially represents two electrically isolated UR2 racks on the same mounting rail.
Rack 2.3 UR2-H Rack 6ES7400-2JAx0-0AA0) Design of the UR2-H The following figure shows the design of the UR2-H rack with 2x9 slots. 1 2 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 290 mm 190 mm 40 mm 465 mm 482,5 mm (1) System I (2) System II Figure 2-3 Rack dimensions CAUTION Danger of damage to equipment. If you insert the power supply module in a slot that is not intended for power supply modules, the module may be damaged.
Rack 2.4 Rack CR2 (6ES7401-2TA01-0AA0) 2.4 Rack CR2 (6ES7401-2TA01-0AA0) Introduction The CR2 rack is used for the design of segmented central racks. The CR2 has both an I/O bus and a communication bus. The I/O bus is split into two local bus segments with 10 or 8 slots.
Rack 2.4 Rack CR2 (6ES7401-2TA01-0AA0) Specifications of the CR2 rack Rack CR2 Number of single-width slots 18 Dimensions W x H x D (mm) 482.5 x 290 x 27.
Rack 2.5 Rack CR3 (6ES7401-1DA01-0AA0) 2.5 Rack CR3 (6ES7401-1DA01-0AA0) Introduction The CR3 rack is used for the design of central racks in standard systems (not in fault-tolerant systems). The CR3 has both an I/O bus and a communication bus. Suitable modules for the CR3 You can use the following modules in the CR3 rack: ● All S7-400 modules except for receive IMs ● You can only operate only one CPU 41x-4H at a time.
Rack 2.6 Racks ER1 (6ES7403-1TAx1-0AA0) and ER2 (6ES7403-1JAx1-0AA0) 2.6 Racks ER1 (6ES7403-1TAx1-0AA0) and ER2 (6ES7403-1JAx1-0AA0) Order number The "x" variable has the following meaning for order numbers 6ES7403-1TAx0-0AA0 und 6ES7403-1JAx01-0AA0: ● x=0: Mounting rail made of sheet steel ● x=1: Mounting rail made of aluminum Introduction The ER1 and ER2 racks are used for the design of expansion racks.
Rack 2.
Rack 2.
Power supply modules 3.1 3 Common characteristics of the power supply modules Functions of the power supply modules The power supply modules of the S7-400 supply the other modules in the rack with their operating voltages via the backplane bus. They do not provide load voltages for the signal modules.
Power supply modules 3.1 Common characteristics of the power supply modules Power supply module in invalid slot If you insert the power supply module of a rack in an invalid slot, it will not power up. In this case, proceed as follows to start up the power supply module correctly: 1. Disconnect the power supply module from the mains (not just the standby switch). 2. Remove the power supply module. 3. Install the power supply module in slot 1. 4.
Power supply modules 3.2 Redundant power supply modules 3.2 Redundant power supply modules Order numbers and function Table 3- 1 Redundant power supply modules Type Order number Input voltage Output voltage See section PS 407 10A R 6ES7407-0KR00-0AA0 85 to 264 VAC or 88 to 300 VDC 5 VDC/10 A and 24 VDC/1 A 3.8 (Page 71) PS 407 10A R 6ES7 407-0KR02-0AA0 85 to 264 VAC or 88 to 300 VDC 5 VDC/10 A and 24 VDC/1 A 3.9 (Page 74) PS 405 10A R 6ES7405-0KR00-0AA0 19.
Power supply modules 3.2 Redundant power supply modules ● The failure of a power supply module is registered via a plug and remove interrupt (default STOP). If used in the second segment of the CR 2 no message is sent if the power supply module fails. ● If two power supply modules are inserted but only one is switched on, there is a power-up delay of up to one minute when the line voltage is switched on.
Power supply modules 3.3 Backup battery (option) 3.3 Backup battery (option) Introduction The power supply modules of the S7-400 have a battery compartment for one or two backup batteries. Use of these batteries is optional. Function of the backup batteries If backup batteries have been installed, the parameters set and the memory contents (RAM) will be backed up via the backplane bus in CPUs and programmable modules if the power supply module is turned off or the supply voltage fails.
Power supply modules 3.3 Backup battery (option) Specifications of the backup battery Backup battery Order number 6ES7971-0BA00 Type 1 x lithium AA Nominal voltage 3.6 V Nominal capacity 2,3 Ah Backup times The maximum backup time is based on the capacity of the backup batteries used and the backup current in the rack. The backup current is the sum of all individual currents of the inserted backed-up modules as well as the requirements of the power supply module when the power is switched off.
Power supply modules 3.4 Operator controls and indicators 3.4 Operator controls and indicators Introduction The power supply modules of the S7-400 have essentially the same controls and indicators. The main differences are: ● Power supply modules with a backup battery have an LED (BATTF) that indicates an empty, defective, or missing backup battery. ● Power supply modules with two redundant backup batteries have two LEDs (BATT1F and BATT2F) to indicate empty, defective or missing backup battery.
Power supply modules 3.4 Operator controls and indicators Meaning of the LEDs The meaning of the LEDs on the power supply modules is described in the tables below. The following section contains a list of the faults indicated by these LEDs and notes on how to acknowledge the faults.
Power supply modules 3.4 Operator controls and indicators Battery voltage on the backplane bus The battery voltage is either supplied by the backup battery or externally to the CPU or receive IM. In its normal state, the level of the battery voltage is between 2.7 V and 3.6 V. The battery voltage is monitored for the lower limit. Violation of the lower limit is indicated by the BAF LED and reported to the CPU. BAF lights up if the battery voltage on the backplane bus is too low.
Power supply modules 3.4 Operator controls and indicators Cover The battery compartment, battery selector switch, voltage selector switch and power connection are housed under one cover. The cover must remain closed during operation in order to protect these operator controls and to prevent static electricity from affecting the battery connections. Discharge your body before you start taking any measurements on a module. Do so by touching grounded metallic parts. Always use grounded measuring instruments.
Power supply modules 3.5 Fault/Error messages via LEDs 3.5 Fault/Error messages via LEDs Introduction The power supply modules of the S7-400 indicate module faults and backup battery faults via LEDs on the front plate.
Power supply modules 3.5 Fault/Error messages via LEDs INTF, 5 VDC, 24 VDC LEDs The following table shows the faults indicated by the INTF, 5 VDC, and 24 VDC LEDs and lists how to remedy the faults. The status of the BAF, BATTF, BATT1F, and BATT2F LEDs is not relevant here.
Power supply modules 3.5 Fault/Error messages via LEDs INTF LED LED DC5V LED DC24V D B B Cause of fault Dynamic overload on 5 V and 24 V Remedy Check load on the power supply module. Possibly remove modules. D = LED is dark; H = LED lights up; B = LED flashing; * If the power supply module does not start up again after a few seconds once the overload has been removed, remove power to the module for 5 minutes and then switch it on again. If the module stills does not start up, you must replace it.
Power supply modules 3.5 Fault/Error messages via LEDs Overload at 24 V In the event of overload at 24 V the output current is electronically limited to a value between 100% and 150% of the rated value. If the voltage then goes below the undervoltage threshold of 19.2 V (-0/+ 5% corresponds to 19.2 V to 20.16 V), the modules respond as follows: ● For the power supply modules, the 24 V voltage is disconnected and reconnected at a repeat rate of approx. 0.
Power supply modules 3.5 Fault/Error messages via LEDs BAF, BATT1F, BATT2F The following table applies to power supply modules with two batteries if the BATT.INDIC switch is set to the 1BATT position. It shows the faults indicated and lists how to remedy the faults. Nothing is indicated about the condition of any second battery that may be in use. Table 3- 9 BAF, BATT1F, BATT2F, BATT.
Power supply modules 3.5 Fault/Error messages via LEDs LED BAF LED BATT1F LED BATT2F Cause of fault H H D Battery 1 empty or missing No external backup voltage available (short-circuit or overload) Insert new battery in compartment 1. Press FMR button. Fault after plugging in a module: Plugged-in module defective Fault after switching on: Remove all modules and plug in individually D H D Battery 1 empty or missing Insert new batteries in compartments 1 and 2 Press FMR button.
Power supply modules 3.6 Power supply module PS 407 4A (6ES7407-0DA01-0AA0) 3.6 Power supply module PS 407 4A (6ES7407-0DA01-0AA0) Function The PS 407 4A power supply module is designed for connecting to either an AC line voltage of 85 to 264 VAC or a DC line voltage of 88 to 300 VDC and supplies 5 VDC/4 A and 24 VDC/0.5 A on the secondary side.
Power supply modules 3.6 Power supply module PS 407 4A (6ES7407-0DA01-0AA0) Specifications of the PS 407 4A Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 25 x290x217 Weight 0.76 kg Cable cross-section 3 x 1.
Power supply modules 3.
Power supply modules 3.7 Power supply module PS 407 4A (6ES7407-0DA02-0AA0) 3.7 Power supply module PS 407 4A (6ES7407-0DA02-0AA0) Function The PS 407 4A power supply module is designed for connecting to either an AC line voltage of 85 to 264 VAC or a DC line voltage of 88 to 300 VDC and supplies 5 VDC/4 A and 24 VDC/0.5 A on the secondary side.
Power supply modules 3.7 Power supply module PS 407 4A (6ES7407-0DA02-0AA0) Specifications of the PS 407 4A Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 25 x290x217 Weight 0.76 kg Cable cross-section 3 x 1.
Power supply modules 3.
Power supply modules 3.8 Power supply modules PS 407 10A (6ES7407-0KA01-0AA0) and PS 10A R (6ES7407-0KR00-0AA0) 3.
Power supply modules 3.8 Power supply modules PS 407 10A (6ES7407-0KA01-0AA0) and PS 10A R (6ES7407-0KR00-0AA0) Specifications of the PS 407 10A and the PS 407 10A R Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 50x290x217 Weight 1.36 kg Cable cross-section 3 x 1.
Power supply modules 3.
Power supply modules 3.9 Power supply modules PS 407 10A (6ES7407-0KA02-0AA0) and PS 10A R (6ES7407-0KR02-0AA0) 3.
Power supply modules 3.9 Power supply modules PS 407 10A (6ES7407-0KA02-0AA0) and PS 10A R (6ES7407-0KR02-0AA0) Specifications of the PS 407 10A and the PS 407 10A R Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 50x290x217 Weight 1.2 kg Cable cross-section 3 x 1.
Power supply modules 3.
Power supply modules 3.10 Power supply module PS 407 20A (6ES7407-0RA01-0AA0) 3.10 Power supply module PS 407 20A (6ES7407-0RA01-0AA0) Function The PS 407 20A power supply module is designed for connecting to either an AC line voltage of 85 to 264 VAC or a DC line voltage of 88 to 300 VDC and supplies 5 VDC/20 A and 24 VDC/1 A on the secondary side.
Power supply modules 3.10 Power supply module PS 407 20A (6ES7407-0RA01-0AA0) Specifications of the PS 407 20A Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 75x290x217 Weight 2.2 kg Cable cross-section 3 x 1.
Power supply modules 3.11 Power supply module PS 407 20A (6ES7407-0RA02-0AA0) 3.11 Power supply module PS 407 20A (6ES7407-0RA02-0AA0) Function The PS 407 20A power supply module is designed for connecting to either an AC line voltage of 85 to 264 VAC or a DC line voltage of 88 to 300 VDC and supplies 5 VDC/20 A and 24 VDC/1 A on the secondary side.
Power supply modules 3.11 Power supply module PS 407 20A (6ES7407-0RA02-0AA0) Specifications of the PS 407 20A Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 25x290x217 Weight 1.3 kg Cable cross-section 3 x 1.
Power supply modules 3.12 Power supply module PS 405 4A (6ES7405-0DA01-0AA0) 3.12 Power supply module PS 405 4A (6ES7405-0DA01-0AA0) Function The PS 405 4A power supply module is designed for connection to a DC line voltage of 19.2 to 72 VDC and supplies 5 VDC/4 A and 24 VDC/0.5 A on the secondary side.
Power supply modules 3.12 Power supply module PS 405 4A (6ES7405-0DA01-0AA0) Specifications of the PS 405 4A Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 25x290x217 Weight 0.76 kg Cable cross-section 3 x 1.5 mm2 (litz wire with wire end ferrule, use component conductor or flexible sheath cable) Cable diameter 3 to 9 mm Input parameters Input voltage Nominal value 24 VDC / 48 V / 60 V Permissible range Static: 19.2 to 72 VDC Dynamic: 18.5 to 75.
Power supply modules 3.13 Power supply module PS 405 4A (6ES7405-0DA02-0AA0) 3.13 Power supply module PS 405 4A (6ES7405-0DA02-0AA0) Function The PS 405 4A power supply module is designed for connection to a DC line voltage of 19.2 to 72 VDC and supplies 5 VDC/4 A and 24 VDC/0.5 A on the secondary side.
Power supply modules 3.13 Power supply module PS 405 4A (6ES7405-0DA02-0AA0) Specifications of the PS 405 4A Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 25x290x217 Weight 0.76 kg Cable cross-section 3 x 1.5 mm2 (litz wire with wire end ferrule, use component conductor or flexible sheath cable) Cable diameter 3 to 9 mm Input parameters Input voltage Nominal value 24 VDC / 48 V / 60 V Permissible range Static: 19.2 to 72 VDC Dynamic: 18.5 to 75.
Power supply modules 3.14 Power supply modules PS 405 10A (6ES7405-0KA01-0AA0) and PS 405 10A R (405-0KR00-0AA0) 3.14 Power supply modules PS 405 10A (6ES7405-0KA01-0AA0) and PS 405 10A R (405-0KR00-0AA0) Function The power supply modules PS 405 10A (standard) and PS 405 10A R (redundancy-capable) are designed for connection to a DC line voltage of 19.2 to 72 VDC and supply 5 VDC/10 A and 24 VDC/1 A on the secondary side.
Power supply modules 3.14 Power supply modules PS 405 10A (6ES7405-0KA01-0AA0) and PS 405 10A R (405-0KR00-0AA0) Specifications of the PS 405 10A and the PS 405 10A R Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 50x290x217 Weight 1. 4 kg Cable cross-section 3 x 1.
Power supply modules 3.15 Power supply modules PS 405 10A (6ES7405-0KA02-0AA0) and PS 405 10A R (405-0KR02-0AA0) 3.15 Power supply modules PS 405 10A (6ES7405-0KA02-0AA0) and PS 405 10A R (405-0KR02-0AA0) Function The power supply modules PS 405 10A (standard) and PS 405 10A R (redundancy-capable) are designed for connection to a DC line voltage of 19.2 to 72 VDC and supply 5 VDC/10 A and 24 VDC/1 A on the secondary side.
Power supply modules 3.15 Power supply modules PS 405 10A (6ES7405-0KA02-0AA0) and PS 405 10A R (405-0KR02-0AA0) Specifications of the PS 405 10A and the PS 405 10A R Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 50x290x217 Weight 1.2 kg Cable cross-section 3 x 1.
Power supply modules 3.16 Power supply module PS 405 20A (6ES7405-0RA01-0AA0) 3.16 Power supply module PS 405 20A (6ES7405-0RA01-0AA0) Function The PS 405 20A power supply module is designed for connection to a DC line voltage of 19.2 to 72 VDC and supplies 5 VDC/20 A and 24 VDC/1 A on the secondary side.
Power supply modules 3.16 Power supply module PS 405 20A (6ES7405-0RA01-0AA0) Specifications of the PS 405 20A Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 75x290x217 Weight 2.2 kg Cable cross-section 3 x 1.5 mm2 (litz wire with wire end ferrule, use component conductor or flexible sheath cable) Cable diameter 3 to 9 mm Input parameters Input voltage Nominal value 24 VDC / 48 V / 60 V Permissible range Static: 19.2 to 72 VDC Dynamic: 18.5 to 75.
Power supply modules 3.17 Power supply module PS 405 20A (6ES7405-0RA02-0AA0) 3.17 Power supply module PS 405 20A (6ES7405-0RA02-0AA0) Function The PS 405 20A power supply module is designed for connection to a DC line voltage of 19.2 to 72 VDC and supplies 5 VDC/20 A and 24 VDC/1 A on the secondary side.
Power supply modules 3.17 Power supply module PS 405 20A (6ES7405-0RA02-0AA0) Specifications of the PS 405 20A Dimensions, weight, and cable cross-sections Dimensions W x H x D (mm) 50x290x217 Weight 1.3 kg Cable cross-section 3 x 1.5 mm2 (litz wire with wire end ferrule, use component conductor or flexible sheath cable) Cable diameter 3 to 9 mm Input parameters Input voltage Nominal value 24 VDC / 48 V / 60 V Permissible range Static: 19.2 to 72 VDC Dynamic: 18.5 to 75.
4 Digital modules 4.1 Module overview Characteristics of digital modules The tables below summarize the essential characteristics of the digital modules. This overview supports you in selecting a module to suit your requirements. Table 4- 1 Digital input modules: overview of features Features Number of inputs SM 421; DI 32xDC 24 V (-1BL0x-) 32 DI; isolated in groups of 32 Nominal 24 VDC input voltage Suitable for...
Digital modules 4.1 Module overview Table 4- 2 Digital output modules: overview of features Features SM 422; DO 16xDC 24 V / 2 A (-1BH1x) SM 422; DO 16xDC 20-125 V/ 1.5 A (-5EH10) SM 422; DO 32xDC 24 V / 0.5 A SM 422; DO 32xDC 24 V / 0.
Digital modules 4.2 Steps in selecting and commissioning the digital module 4.2 Steps in selecting and commissioning the digital module Introduction The following table contains the tasks that you have to perform one after the other to commission digital modules successfully. The sequence of steps is a suggestion, but you can perform individual steps either earlier or later (for example, assign parameters to the module) or install, commission etc. other modules in between times.
Digital modules 4.3 Assigning parameters to digital modules 4.3 Assigning parameters to digital modules 4.3.1 Parameters Introduction Digital modules may have different features. You can configure the features of some modules. Tools for parameter assignment You assign parameters to digital modules in STEP 7. After you have defined all parameters, download these from your programming device to the CPU.
Digital modules 4.3 Assigning parameters to digital modules 4.3.2 Parameters of digital input modules Overview The configurable digital input modules use a subset of the parameters and ranges of values listed in the table below, depending on functionality. For information on subsets "supported" by specific digital modules, refer to the chapter dealing with the relevant module. Do not forget that some digital modules have different input delays after parameter assignment.
Digital modules 4.3 Assigning parameters to digital modules 4.3.3 Parameters of digital output modules Overview The configurable digital output modules use a subset of the parameters and ranges of values listed in the table below, depending on the functionality. For information on subsets "supported" by specific digital modules, refer to the section dealing with the relevant module beginning with section 4.7. The defaults apply if you have not set any parameters in STEP 7.
Digital modules 4.4 Diagnostics for digital modules 4.4 Diagnostics for digital modules 4.4.1 General information about diagnostic messages Programmable and non-programmable diagnostic messages Using the diagnostics function, we make a distinction between programmable and nonprogrammable diagnostic messages. You only obtain programmable diagnostic messages if you have enabled the diagnostics using the relevant parameters.
Digital modules 4.4 Diagnostics for digital modules 4.4.2 Diagnostic messages of the digital modules Overview The table below gives an overview of the diagnostic messages for the digital modules with diagnostics capability. You can find out which diagnostic message each module is capable of in the Appendix entitled "Diagnostic data of the signal modules".
Digital modules 4.4 Diagnostics for digital modules 4.4.3 Causes of errors and remedies for digital modules Overview Table 4- 7 Diagnostic messages of the digital modules, causes of errors and remedies Diagnostic message Possible cause of error Remedy Module error Any, the module has detected an error. - Internal error Module has detected an error within the automation system. - External error Module has detected an error outside of the automation system.
Digital modules 4.4 Diagnostics for digital modules Diagnostic message Wire break Possible cause of error Lines interrupted Remedy Connect the cable No external sensor supply Wire sensors with10 to 18 kΩ. Channel not connected (open) Disable the "Diagnostics – Wire break" parameter for the channel in STEP 7. Wire the channel 102 Fuse blown One or more fuses on the module has blown and caused this fault. Remove the overload and replace the fuse.
Digital modules 4.5 Interrupts of the digital modules 4.5 Interrupts of the digital modules Introduction This section describes the interrupt behavior of the digital modules. There are two types of interrupt: ● Diagnostic interrupt ● Hardware interrupt Note that not all digital modules have interrupt capability or they are only capable of a subset of the interrupts described here. For information on the digital modules that support interrupts, refer to their specifications.
Digital modules 4.5 Interrupts of the digital modules Hardware interrupt A digital input module can trigger a hardware interrupt for each channel at a rising or falling edge, or both, of a signal status change. You perform parameter assignment for each channel separately. The parameters can be changed at any time (in RUN mode in the user program.) Pending hardware interrupts trigger hardware interrupt processing in the CPU (OB 40 to OB 47).
Digital modules 4.6 Input characteristic curve for digital inputs 4.6 Input characteristic curve for digital inputs IEC 61131, type 1 and type 2 The IEC 61131 standard requires the following for the input current: ● In the case of type 2, an input current of ≥ 2 mA already at + 5 V ● In the case of type 1, an input current of ≥ 0.5 mA already at + 5 V EN 60947-5-2, 2-wire BEROs The standard for BEROs (EN 60947-5-2) specifies that there can be a current of ≤ 1.5 mA for BEROs in the "0" signal state.
Digital modules 4.7 Digital input module SM 421; DI 32 x DC 24 V (6ES7421-1BL01-0AA0) 4.
Digital modules 4.
Digital modules 4.7 Digital input module SM 421; DI 32 x DC 24 V (6ES7421-1BL01-0AA0) Specifications of the SM 421; DI 32 x DC 24 V Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 500 g Module-specific data Number of inputs 32 Cable length Unshielded Max. 600 m Shielded Max.
Digital modules 4.7 Digital input module SM 421; DI 32 x DC 24 V (6ES7421-1BL01-0AA0) Sensor selection data Input voltage Nominal value 24 VDC For "1" signal 13 to 30 V For "0" signal -30 to 5 V Input current With "1" signal 7 mA Input delay At "0" to "1" transitions 1.2 to 4.8 ms With "1" to "0" 1.2 to 4.
Digital modules 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0) 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH010AB0) 4.8.
Digital modules 4.
Digital modules 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0) Wiring diagram of the redundant sensor supply The figure below shows how an additional redundant voltage source can be used to supply sensors via Vs (for example, using another module.
Digital modules 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0) Current consumption From the backplane bus (5 V) Max. 130 mA From power supply L+ Max. 120 mA Power loss of the module Typ.
Digital modules 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0) Time, Frequency Internal preparation time 1 for Status identifier only Input delay of the channel group 0.05 ms/0.05 ms Input delay of the channel group 0.05 ms/0.1 ms or 0.1 ms/0.1 ms Input delay of the channel group ≥ 0.5 ms Maximum 50 µs maximum 70 µs maximum 180 µs Status identifier and hardware interrupt enable Input delay of the channel group 0.05 ms/0.05 ms 2) Input delay of the channel group 0.05 ms/0.
Digital modules 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0) 4.8.2 Assigning parameters to the SM 421; DI 16 x DC 24 V Parameter assignment You will find a description of the general configuration of digital modules in section 5.3. Parameters of SM 421; DI 16 x DC 24 V The table below shows an overview of configurable parameters and their default settings for SM 421; DI 16 x DC 24 V.
Digital modules 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0) Ensuring a wire break check is carried out To ensure that a wire break check is carried out, you require an external sensor circuit using a resistor of 10 to 18 kΩ. The resistor should be connected parallel to the contact and should be arranged as closely as possible to the sensor.
Digital modules 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0) 4.8.3 Behavior of the SM 421; DI 16 x DC 24 V Effect of operating mode and supply voltage on the input values The input values of the SM 421; DI 16 x 24 DC depend on the operating mode of the CPU and on the supply voltage of the module.
Digital modules 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0) Effect of errors and parameter assignment on the input values The input values of the SM 421; DI 16 x 24 DC are affected by certain errors and the parameter assignment of the module. The following table lists the effects on the input values. You can find more diagnostic messages in the Appendix "Diagnostic Data of the Signal Modules".
Digital modules 4.8 Digital input module SM 421; DI 16 x DC 24 V (6ES7421-7BH01-0AB0) Behavior when the input delay equals 0.1 ms or 0.05 ms and an error occurs If you have set the following parameters: ● Input delay: 0.1 ms or 0.
Digital modules 4.9 Digital input module SM 421; DI 16 x AC 120 V (6ES7421-5EH00-0AA0) 4.
Digital modules 4.
Digital modules 4.9 Digital input module SM 421; DI 16 x AC 120 V (6ES7421-5EH00-0AA0) Specifications of SM 421; DI 16 x AC 120 V Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Digital modules 4.9 Digital input module SM 421; DI 16 x AC 120 V (6ES7421-5EH00-0AA0) Input delay At "0" to "1" transitions 2 to 15 ms With "1" to "0" 5 to 25 ms Input characteristics In accordance with IEC 61131; type 2 Connection of 2-wire BEROs Permissible quiescent current Supported S7-400 Automation System Module Data Reference Manual, Edition 09/2009, A5E00850736-06 Max.
Digital modules 4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0) 4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH000AB0) 4.10.
Digital modules 4.
Digital modules 4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0) Specifications of the SM 421; DI 16 x UC 24/60 V Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 600 g Module-specific data Number of inputs 16 Cable length Unshielded input delay 0.
Digital modules 4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0) Sensor selection data Input voltage Nominal value 24 to 60 VUC For "1" signal 15 to 72 VDC -15 to -72 VDC 15 to 60 VAC For "0" signal -6 to +6 VDC 0 to 5 VAC Frequency band 47 DC/AC to 63 Hz Input current With "1" signal Typ. 4 mA to 10 mA Input characteristics Similar to IEC 61131-2 1) Connection of 2-wire BEROs Permissible quiescent current Supported Max. 0.
Digital modules 4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0) 4.10.2 Assigning parameters to the SM 421; DI 16 x UC 24/60 V Parameter assignment You will find a description of the general configuration of digital modules in section 5.3. Parameters of the SM 421; DI 16 x UC 24/60 V The following table contains an overview of the parameters you can set and their default settings for the SM 421; DI 16 x UC 24/60 V.
Digital modules 4.10 Digital input module SM 421; DI 16 x UC 24/60 V (6ES7421-7DH00-0AB0) Setting the input delay for channel groups You can only set the input delay for each group of channels. In other words, the setting for channel 0 applies to inputs 0 to 7 and the setting for channel 8 applies to inputs 8 to 15.
Digital modules 4.11 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7 421-1FH00-0AA0) 4.
Digital modules 4.
Digital modules 4.11 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7 421-1FH00-0AA0) Specifications of the SM 421; DI 16 x UC 120/230 V Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Digital modules 4.11 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7 421-1FH00-0AA0) Input delay At "0" to "1" transitions 5 to 25 ms With "1" to "0" 5 to 25 ms Input characteristics In accordance with IEC 61131-2; Type 1 Connection of 2-wire BEROs Permissible quiescent current Supported S7-400 Automation System Module Data Reference Manual, Edition 09/2009, A5E00850736-06 Max.
Digital modules 4.12 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7421-1FH20-0AA0) 4.
Digital modules 4.
Digital modules 4.12 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7421-1FH20-0AA0) Specifications of the SM 421; DI 16 x UC 120/230 V Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Digital modules 4.12 Digital input module SM 421; DI 16 x UC 120/230 V (6ES7421-1FH20-0AA0) Input current At signal "1" (120 V) Typ. 10 mA AC Typ. 1.8 mA DC At signal "1" (230 V) Typ. 14 mA AC Typ.
Digital modules 4.13 Digital input module SM 421; DI 32xUC 120 V (6ES7421-1EL00-0AA0) 4.
Digital modules 4.
Digital modules 4.13 Digital input module SM 421; DI 32xUC 120 V (6ES7421-1EL00-0AA0) Specifications of the SM 421; DI 32 x UC 120 V Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Digital modules 4.13 Digital input module SM 421; DI 32xUC 120 V (6ES7421-1EL00-0AA0) Input characteristics In accordance with IEC 61131; type 1 Connection of 2-wire BEROs Supported Permissible quiescent current S7-400 Automation System Module Data Reference Manual, Edition 09/2009, A5E00850736-06 Max.
Digital modules 4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A; (6ES7422-1BH11-0AA0) 4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A; (6ES74221BH11-0AA0) Features The digital output module SM 422; DO 16 x DC 24 V/2 A has the following features: ● 16 outputs, isolated in two groups of 8 ● Output current 2 A ● Nominal load voltage 24 VDC The status LEDs also indicate the system status even when the front connector is not inserted.
Digital modules 4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A; (6ES7422-1BH11-0AA0) Wiring and Block Diagram of the SM 422; DO 16 x DC 24 V/2 A Process 1 2 3 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 3. Supply group 4. Supply group 5. Supply group 6. Supply group 7. Supply group 8. Supply group 2L+ 2L+ 4 5 6 Data register and bus control 2. Supply group 1L+ 0 7 1M 3L+ 3L+ 0 1 2 3 4L+ 4L+ 4 5 6 7 LED control 1.
Digital modules 4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A; (6ES7422-1BH11-0AA0) Specifications of the SM 422, DO 16 x DC 24 V/2 A Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Digital modules 4.14 Digital output module SM 422; DO 16 x DC 24 V/2 A; (6ES7422-1BH11-0AA0) Output delay (resistive load) At "0" to "1" transitions Max. 1 ms With "1" to "0" Max. 1 ms Load resistance range 24 to 4 kΩ Lamp load Max.
Digital modules 4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0) 4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES74225EH10-0AB0) 4.15.1 Features Overview The SM 422; DO 16 x DC 20-125 V/1.
Digital modules 4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0) Wiring diagram of the SM 422; DO 16 x DC 20-125 V/1.5 A -+ Byte 1 -+ Figure 4-12 Module 0 1 2 3 L1+ L1+ 4 5 6 Data register and bus control Byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 7 M1 0 1 2 3 L2+ L2+ 4 5 6 7 LED control Process M2 M2 Wiring diagram of the SM 422; DO 16 x DC 20-125 V/1.
Digital modules 4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0) Specifications of the SM 422; DO 16 x DC 20-125 V/1.5 A Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 800 g Module-specific data Number of outputs 16 Cable length Unshielded Max. 600 m Shielded Max.
Digital modules 4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0) Output current With signal "1" Rated value Permissible range Permissible peak current 1.5 A 10 mA to 1.5 A Maximum 3 A (for 10 ms) With "0" signal (residual current) Max. 0,5 mA Output delay (resistive load) At "0" to "1" transitions Max. 2 ms With "1" to "0" Max.
Digital modules 4.15 Digital output module SM 422; DO 16 x DC 20-125 V/1.5 A (6ES7422-5EH10-0AB0) 4.15.2 Assigning parameters to the SM 422; DO 16 x DC 20-125 V/1.5 A Parameter assignment You will find a description of the general procedure for assigning parameters to digital modules in the respective sections. Parameters of the SM 421; DO 16 x DC 20-125 V/1.5 A You will find an overview of the parameters you can set and their default settings for the SM 422; DO 16 x DC 20-125 V/1.
Digital modules 4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-1BL00-0AA0) 4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES74221BL00-0AA0) Features The digital output module SM 422; DO 32 x DC 24 V/0.5 A has the following features: ● 32 outputs, isolated in a group of 32 ● Power is supplied to 8 channels in groups ● A supply group always consists of eight adjacent channels starting with channel 0.
Digital modules 4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-1BL00-0AA0) Wiring and block diagram of the SM 422, DO 32 x DC 24 V/0.
Digital modules 4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-1BL00-0AA0) Specifications of the SM 422; DO 32 x DC 24 V/0.5 A Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Digital modules 4.16 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-1BL00-0AA0) Output delay (resistive load) At "0" to "1" transitions Max. 1 ms With "1" to "0" Max. 1 ms Load resistance range 48 to 4 kΩ Lamp load Max.
Digital modules 4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0) 4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES74227BL00-0AB0) 4.17.1 Features Overview The digital output module SM 422; DO 32 x DC 24 V/0.5 A has the following features: ● 32 outputs, fused and isolated in groups of 8 ● Output current 0.
Digital modules 4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0) Wiring and Block Diagram of the SM 422; DO 32 x DC 24 V/0.5 A Module 1L+ 1M 2L+ 3L+ 4L+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1L+ monitoring INTF EXTF Int.
Digital modules 4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0) Specifications of the SM 422; DO 32 x DC 24 V/0.5 A Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Digital modules 4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0) Monitoring of Short-circuit > 1 A (typ.) Wire break < 0.15 mA Injection of substitution values Yes Actuator selection data Output voltage With "1" signal Min. L + (-0.8 V) Output current For signal "1" Rated value Permissible range 0.5 A 5 mA up to 600 mA With "0" signal (residual current) Max.
Digital modules 4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0) 4.17.2 Assigning parameters to the SM 422; DO 32 x DC 24 V/0.5 A Parameter assignment You will find a description of the general procedure for assigning parameters to digital modules in the respective sections. Parameters of SM 422; DO 32 x DC 24 V/0.5 A You will find an overview of the parameters that you can set and their default settings for the SM 422; DO 32 x DC 24 V/0.5 A in the table below.
Digital modules 4.17 Digital output module SM 422; DO 32 x DC 24 V/0.5 A (6ES7422-7BL00-0AB0) 4.17.3 Behavior of the SM 422; DO 32 x DC 24 V/0.5 A Influence of the operating state and supply voltage on output values The output values of the SM 422; DO 32 x DC 24 V/0.5 A depend on the operating mode of the CPU and on the supply voltage of the module.
Digital modules 4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A (6ES7422-1FF00-0AA0) 4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A (6ES74221FF00-0AA0) Features The SM 422; DO 8 x AC 120/230 V/5 A has the following features: ● 8 outputs, isolated in groups of 1 ● Output current 5 A ● Nominal load voltage 120/230 VAC The status LEDs also indicate the system status even when the front connector is not inserted.
Digital modules 4.
Digital modules 4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A (6ES7422-1FF00-0AA0) Specifications of the SM 422; DO 8 x AC 120/230 V/5 A Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Digital modules 4.18 Digital output module SM 422; DO 8 x AC 120/230 V/5 A (6ES7422-1FF00-0AA0) Output current With signal "1" Rated value Permissible range Permissible peak current (per group) 5A 10 mA to 5 A Maximum 50 A per cycle With "0" signal (residual current) Max. 3,5 mA Output delay (resistive load) At "0" to "1" transitions Maximum 1 AC scan cycle With "1" to "0" Maximum 1 AC scan cycle Minimum load current 10 mA Zero transition Max. 55 V Size of the motor starter Max.
Digital modules 4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A (6ES7422-1FF00-0AA0) 4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A (6ES74221FF00-0AA0) Features The SM 422; DO 16 x AC 120/230 V/2 A has the following features: ● 16 outputs, isolated in groups of 4 ● Output current 2 A ● Nominal load voltage 120/230 VAC The status LEDs also indicate the system status even when the front connector is not inserted.
Digital modules 4.
Digital modules 4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A (6ES7422-1FF00-0AA0) Specifications of the SM 422; DO 16 x AC 120/230 V/2 A Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Digital modules 4.19 Digital output module SM 422; DO 16 x AC 120/230 V/2 A (6ES7422-1FF00-0AA0) Output current With signal "1" Rated value Permissible range Permissible peak current (per group) 2A 10 mA to 2 A Maximum 50 A per cycle With "0" signal (residual current) Max. 2.6 mA Output delay (resistive load) At "0" to "1" transitions Max. 1 ms With "1" to "0" Maximum 1 AC scan cycle Minimum load current 10 mA Zero transition Non-zero cross outputs Size of the motor starter Max.
Digital modules 4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0) 4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES74225EH00-0AB0) 4.20.
Digital modules 4.
Digital modules 4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0) Specifications of the SM 422; DO 16 x AC 20-120 V/2 A Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 800 g Module-specific data Number of outputs 16 Cable length Unshielded Max. 600 m Shielded Max.
Digital modules 4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0) Actuator selection data Output voltage With "1" signal L1 (-1.5 Vrms) Output current With "1" signal Nominal value Permissible range 2A 100 mA to 2 A Maximum 20 A / 2 cycle Permissible inrush current (per group) With "0" signal (residual current) Max. 2.5 mA at 30 V Max. 4.
Digital modules 4.20 Digital output module SM 422; DO 16 x AC 20-120 V/2 A (6ES7422-5EH00-0AB0) 4.20.2 Assigning parameters to the SM 422; DO 16 x AC 20-120 V/2 A Parameter assignment You will find a description of the general procedure for assigning parameters to digital modules in the respective sections. Parameters of the SM 422; DO 16 x AC 20-120 V/2 A You will find an overview of the parameters you can set and their default settings for the SM 422; DO 16 x AC 20-120 V/2 A in the following table.
Digital modules 4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0) 4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0) Features The SM 422; DO 16 x UC 30/230 V/Rel. 5 A has the following features: ● 16 outputs, isolated in 8 groups of 2 ● Output current 5 A ● Nominal load voltage 230 VAC / 125 VDC The status LEDs also indicate the system status even when the front connector is not inserted.
Digital modules 4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0) Wiring and block diagram of the SM 422; DO 16 x UC 30/230 V/Rel. 5 A Process Module Figure 4-18 2 3 2L 4 5 3L Data register and bus control 0 1 1L 6 7 4L 0 1 5L 2 3 6L 4 5 7L LED control 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 6 7 8L Wiring and block diagram of the SM 422; DO 16 x UC 30/230 V/Rel.
Digital modules 4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0) Specifications of the SM 422; DO 16 x UC 30/230 V/Rel. 5 A Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 700 g Module-specific data Number of outputs 16 Cable length Unshielded Max. 600 m Shielded Max. 1000 m Voltages, currents, electrical potentials Cumulative current of outputs (per group) With fan subassembly Up to 40° C Max.
Digital modules 4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel. 5 A (6ES7422-1HH00-0AA0) Switching capacity and service life of contacts With resistive load Voltage Current Number of switching cycles (typ.) 30 VDC 5.0 A 0.18 million 60 VDC 1.2 A 0.1 million 125 VDC 0.2 A 0.1 million 230 VAC 5.0 A 0.18 million Voltage Current Number of switching cycles (typ.) 30 VDC 5.0 A 0.1 million 5.0 A 0.
Digital modules 4.21 Relay output module SM 422; DO 16 x UC 30/230 V/Rel.
Analog modules 5.1 5 General information Structure This section contains the following topics: 1. Overview of the analog modules available 2. General information concerning all analog modules (such as parameter assignment and diagnostics) 3.
Analog modules 5.2 Module overview 5.2 Module overview Features of the analog modules The tables below summarize the essential properties of the analog modules. This overview supports you in selecting a module to suit your requirements.
Analog modules 5.2 Module overview Features Max.
Analog modules 5.2 Module overview Table 5- 2 Analog output modules: overview of features Features 182 Module SM 432; AO 8 x 13 Bit (-1HF00-) Number of outputs 8 outputs Resolution 13 bits Output type Each separate channel: Voltage Current Programmable diagnostics No Diagnostic interrupt No Substitution value output No Voltage relationships Analog section isolated from: the CPU Load voltage Max.
Analog modules 5.3 Steps for commissioning analog modules 5.3 Steps for commissioning analog modules Introduction The following table contains the tasks that you have to perform one after the other to commission analog modules successfully. The sequence of steps is a suggestion, but you can perform individual steps either earlier or later (for example, assign parameters to the module) or install, commission etc. other modules in between times.
Analog modules 5.4 Representation of analog values 5.4 Representation of analog values 5.4.1 General information Introduction This chapter describes the analog values for all measuring or output ranges supported by the analog modules. Analog to digital conversion Analog input modules convert the analog process signal into digital form. Analog output modules convert digital output values to analog signals.
Analog modules 5.4 Representation of analog values 5.4.2 Representation of analog values of analog input channels Introduction The tables in this section contain the measured value representations for the various measuring ranges of the analog input modules. The values in the tables apply to all modules with the corresponding measuring ranges.
Analog modules 5.4 Representation of analog values 5.4.
Analog modules 5.
Analog modules 5.4 Representation of analog values 5.4.4 Representation of analog values in voltage measuring ranges Table 5- 9 Representation of analog values in the ±1 V to ±10 V voltage measuring ranges System Voltage measuring range Dec. Hex. 118,515 % 32767 7FFF 117,593 % 32512 7F00 ± 10 V ±5V ± 2.5 V ±1V 11.851 V 5.926 V 2.963 V 1.185 V Overflow 11.759 V 5.879 V 2.940 V 1.176 V Overshoot range 5V 2.
Analog modules 5.4 Representation of analog values Table 5- 11 Representation of analog values in the voltage measuring ranges 1 to 5 V and 0 to 10 V System Voltage measuring range Dec. Hex. Overflow 5.704 V 11.759 V Overshoot range 6C00 5V 10 V 5100 3.75 V 7.5 V 1 1 V + 144.7 µV 0 V + 361.7 µV 0 1V 0V 117,593 % 32512 7F00 117,589 % 32511 7EFF 27649 6C01 100,000 % 27648 75 % 20736 0% 0 -1 - 17,593 % - 4864 ≤-17,596 % 32767 0 to 10 V 11.852 V 7FFF 0,003617 % 1 1 to 5 V 5.
Analog modules 5.4 Representation of analog values 5.4.5 Representation of analog values in the current measuring ranges Table 5- 12 Representation of analog values in the ±3.2 mA to ±20 mA current measuring ranges System Current measuring range Dec. Hex. 118,515 % 32767 7FFF 117,593 % 32512 7F00 117,589 % 32511 7EFF 27649 6C01 100,000 % 27648 6C00 75 % 20736 ± 20 mA ± 5 mA ± 3.2 mA 23.70 mA 11.85 mA 5.93 mA 3.79 mA Overflow 23.52 mA 11.76 mA 5.88 mA 3.
Analog modules 5.4 Representation of analog values Table 5- 14 Representation of analog values in current measuring ranges 4 to 20 mA System Current measuring range Dec. Hex. 118,515 % 32767 7FFF 117,593 % 32512 7F00 117,589 % 32511 7EFF 27649 6C01 4 to 20 mA 22.96 mA Overflow 22.81 mA Overshoot range 100,000 % 27648 6C00 20 mA 75 % 20736 5100 16 mA 0,003617 % 1 1 4 mA + 578.7 nA 0% 0 0 4 mA -1 - 17,593 % - 4864 FFFF ED00 Nominal range Undershoot range 1.
Analog modules 5.4 Representation of analog values 5.4.6 Representation of analog values for resistance-type sensors Table 5- 15 Analog value representation for resistance-type sensors from 48 Ω to 6 kΩ System Resistive transducer range Dec. Hex. 118,515 % 32767 7FFF 117,593 % 32512 7F00 117,589 % 32511 7EFF 27649 6C01 100,000 % 27648 6C00 75 % 20736 48 Ω 150 Ω 300 Ω 600 Ω 6 kΩ 56.89 Ω 177.77 Ω 355.54 Ω 711.09 Ω 7.11 kΩ Overflow 56.44 Ω 176.38 Ω 352.77 Ω 705.53 Ω 7.
Analog modules 5.4 Representation of analog values 5.4.7 Representation of analog values for resistance thermometer Representation of the analog values of Pt x00 standard resistance thermometers Table 5- 16 Representation of analog values for Pt 100/200/500/1000 resistance thermometers Range Pt x00 Standard in °C (1 digit = 0.1° C) Unitdeci mal Unit hexadecimal Pt x00 Standard in °F (1 digit = 0.1 ° F) Unit decimal Unit hexadecimal Pt x00 Standard in K (1 digit = 0.
Analog modules 5.4 Representation of analog values Representation of analog values for Ni x00 standard resistance thermometers Table 5- 18 Analog value representation for resistance thermometers Ni100, 120, 200, 500, 1000 Range Unit hexadecimal Ni x00 standard in K (1 digit = 0.
Analog modules 5.4 Representation of analog values Representation of analog values for Cu 10 standard resistance thermometers Table 5- 20 Representation of analog values for Cu 10 standard resistance thermometers Range Cu 10 Standard in K (1 digit = 0.
Analog modules 5.4 Representation of analog values 5.4.
Analog modules 5.
Analog modules 5.
Analog modules 5.
Analog modules 5.
Analog modules 5.4 Representation of analog values 5.4.9 Representation of analog values for analog output channels Introduction The tables in this section contain the analog value representation for output channels of the analog output modules. The values in the tables apply to all modules with the corresponding output ranges. Notes for readers of the tables The tables "Bipolar output ranges", "Unipolar output ranges", "Life-zero output ranges" contain the binary representation of the measured values.
Analog modules 5.
Analog modules 5.4 Representation of analog values Representation of analog values in the voltage output ranges Table 5- 34 Representation of analog values in the ±10 V output range System Voltage output range Dec. Hex. 118,5149 % 32767 7FFF 32512 7F00 117,589 % 32511 7EFF 27649 6C01 100 % 27648 6C00 75 % 20736 ±10 V 0.00 V Overflow, off power 11.76 V Overshoot range 10 V 5100 7.5 V 0,003617 % 1 1 361.7 µV 0% 0 0 0V -1 FFFF - 361.7 µV - 75 % - 20736 AF00 - 7.
Analog modules 5.4 Representation of analog values Representation of analog values in the current output ranges Table 5- 36 Representation of analog values in the ±20 mA output range System Current output range Dec. Hex. 118,5149 % 32767 7FFF 32512 7F00 117,589 % 32511 7EFF 27649 6C01 100 % 27648 6C00 75 % 20736 ± 20 mA 0.00 mA Overflow, off power 23.52 mA Overshoot range 20 mA 5100 15 mA 0,003617 % 1 1 723.4 mA 0% 0 0 0 mA FFFF - 723.
Analog modules 5.5 Setting the measuring method and ranges of analog input channels 5.
Analog modules 5.5 Setting the measuring method and ranges of analog input channels Replugging measuring range modules To reconnect a measuring range module: Graphic Description Use a screwdriver to lever the measuring range module out of the analog input module.
Analog modules 5.5 Setting the measuring method and ranges of analog input channels Graphic Description Insert the measuring range module into the required slot (1) of the analog input module. The measuring range selected is the one that points to the marker point on module (2). Continue with the insertion of all other measuring range modules. 1 2 Then mount the module. CAUTION Danger of damage to equipment. Faulty measuring range module settings may lead to the destruction of the module.
Analog modules 5.6 Behavior of the analog modules 5.6 Behavior of the analog modules 5.6.
Analog modules 5.6 Behavior of the analog modules 5.6.2 Effect of supply voltage and operating mode Overview The IO values of analog modules are determined by the CPU operating state and the module's supply voltage.
Analog modules 5.6 Behavior of the analog modules 5.6.3 Effect of the value range for analog values Effect of errors on analog modules with diagnostics capability Errors may lead to an entry in the diagnostics buffer and trigger a diagnostic interrupt at analog modules with diagnostics function and corresponding parameter settings. You will find the errors that might be involved in the section "Diagnostics of the analog modules".
Analog modules 5.6 Behavior of the analog modules 5.6.4 Effect of operational limit and basic error limit Operational limit The operational limit represents the measuring error, or output error, of an analog module across the entire permissible temperature range of the module, based on the module's nominal range. Basic error limit The basic error limit represents the operational limit at 25° C, based on the module's nominal range.
Analog modules 5.7 Conversion, cycle, settling and response time of analog modules 5.7 Conversion, cycle, settling and response time of analog modules Conversion time of analog input channels The conversion time is the total of the basic conversion time plus additional processing times of the module for: ● Resistance measurement ● Wire break monitoring The basic conversion time depends directly on the conversion method of the analog input channel (integrating method, actual value conversion.
Analog modules 5.7 Conversion, cycle, settling and response time of analog modules Use of smoothing Smoothing of analog values ensures a stable analog signal for further processing. It makes sense to smooth the analog values with slow variations of measured values, for example, with temperature measurements. Smoothing principle The measured values are smoothed by digital filtering.
Analog modules 5.7 Conversion, cycle, settling and response time of analog modules Conversion time of the analog output channels The conversion time of the analog output channels includes the transfer of digitized output values from internal memory, and their digital-to-analog conversion. Cycle time of analog output channels The analog output channels are converted sequentially - that is the analog output channels are converted one after the other.
Analog modules 5.7 Conversion, cycle, settling and response time of analog modules Response time The response time (t1 to t3) - that is the time from the application of the digital output values in internal memory until the specified value is obtained at the analog output - is, in the most unfavorable case, the sum of the cycle time and the settling time.
Analog modules 5.8 Assigning parameters to analog modules 5.8 Assigning parameters to analog modules 5.8.1 General information about parameter assignment Introduction The characteristics of analog modules may differ. The characteristics of the modules can be defined by assigning parameters. Tools for parameter assignment You program analog modules in STEP 7. After you have defined all parameters, download these from your programming device to the CPU.
Analog modules 5.8 Assigning parameters to analog modules 5.8.2 Parameters of analog input modules Overview Analog input modules use a subset of the parameters and value range listed in the table below, based on their functionality. For information on subsets "supported" by specific analog modules, refer to the section dealing with the relevant module. The defaults apply if you have not set any parameters in STEP 7.
Analog modules 5.8 Assigning parameters to analog modules Parameters Value range Default2 Measuring range For information on configurable measuring ranges of the input channels, refer to the relevant module description. ± 10 V Reference temperature - 273.15 to 327.
Analog modules 5.8 Assigning parameters to analog modules 5.8.3 Parameters of analog output modules Overview Analog output modules use a subset of the parameters and value range listed in the table below, based on their functionality. For information on subsets "supported" by specific analog modules, refer to the section dealing with the relevant module. The default settings apply if you have not set any parameters in STEP 7.
Analog modules 5.9 Connecting sensors to analog inputs 5.9 Connecting sensors to analog inputs Introduction The analog input modules support various sensors, such as voltage/current sensors, and resistors, depending on the set measuring method. This section contains general information that is generally applicable to all the connection options for sensors described in the sections that follow. Cables for analog signals Always use shielded twisted-pair cables to wire analog signals.
Analog modules 5.9 Connecting sensors to analog inputs Connecting electrically isolated sensors The isolated sensors are not connected with the local ground potential (chassis ground). They can be floating. With isolated sensors, potential differences might arise between the different sensors. These potential differences can arise as a result of interference or the local distribution of the sensors.
Analog modules 5.9 Connecting sensors to analog inputs Connecting non-isolated sensors Depending on local conditions or interference, potential differences UCM (static or dynamic) can occur between the locally distributed measuring points. If the permitted value for UCM is exceeded, there must be equipotential bonding conductors between the measuring points.
Analog modules 5.10 Connecting voltage sensors 5.10 Connecting voltage sensors Connecting voltage sensors Note The cables required to connect the analog input module and the sensors are not drawn in the figures shown below. In other words, you must continue to read and follow the instructions in the section "Connecting sensors to analog inputs", which contains general information on connecting sensors.
Analog modules 5.11 Connecting current sensors 5.11 Connecting current sensors Sensor supply voltage Note The cables required to connect the analog input module and the sensors are not drawn in the figures shown below. In other words, you must continue to read and follow the instructions in the section "Connecting sensors to analog inputs", which contains general information on connecting sensors.
Analog modules 5.11 Connecting current sensors SM 431; 8 x 13 Bit: Connecting 2-wire transducers Because the supply voltage for the 2-wire transducers is not fed by the SM 431; 8 x 13 Bit, you must supply the sensors separately with 24 V.
Analog modules 5.
Analog modules 5.11 Connecting current sensors SM 431; 8 x 13 Bit: Connecting 4-wire transducers To ensure that the permissible value for UCM is not exceeded, you must connect the Mcables to MANA.
Analog modules 5.12 Connecting resistance thermometers and resistors 5.12 Connecting resistance thermometers and resistors Connecting resistance thermometers and resistors Note The cables required to connect the analog input module and the sensors are not drawn in the figures shown below. In other words, you must continue to read and follow the instructions in the section "Connecting sensors to analog inputs", which contains general information on connecting sensors.
Analog modules 5.12 Connecting resistance thermometers and resistors 3-conductor connection of a resistance thermometer With a 3-conductor connection to modules with 4 terminals per resistance thermometer, you must set up a jumper between M- and IC- and SE- and AGND (see Figure). The module compensates in this circuit for the effect of the line resistance between the module and the resistance thermometer/resistor.
Analog modules 5.12 Connecting resistance thermometers and resistors 2-conductor connection of a resistance thermometer For 2-conductor connections, bridge the M+ and IC+, and the M- and IC- terminals of the module. Note: Cable resistance is also measured.
Analog modules 5.13 Connecting thermocouples 5.13 Connecting thermocouples Thermocouple design Thermocouples consist of a pair of thermal probes, and all necessary installation and connecting parts. The thermocouple consists of two wires of dissimilar metals or metal alloys soldered or welded together at the ends. There are different types of thermocouple, depending on the composition of the material used, for example, K, J, N thermocouples.
Analog modules 5.13 Connecting thermocouples The thermocouples can be extended from their point of connection to the reference junction by means of compensating wires. These compensating wires are made of the same materials as the thermocouple wires. The supply lines are made of copper. Note Make sure that the polarity is correct, otherwise significant measuring errors will occur.
Analog modules 5.13 Connecting thermocouples Principle of operation of internal compensation Internal compensation allows you to form the reference point at the terminals of the analog input module. In this case, route the compensating lines directly to the analog module. The internal temperature sensor measures the module's temperature and returns a compensation voltage. Note: internal compensation is not as accurate as external compensation.
Analog modules 5.13 Connecting thermocouples Connecting the compensating box The compensating box is looped in through the leads of each thermocouple. The compensating box must be supplied on an isolated basis. The power supply module must provide adequate noise filtering, for example, by means of grounded cable shielding. Each channel can use a thermocouple type supported by the analog module independently of the other channels. Each channel requires its own compensating box.
Analog modules 5.13 Connecting thermocouples Connecting to the reference junction (Order No. M72166-xxx00) 2 + 1 - + + M+ MM+ M- 3 M +: Measuring line (positive) M -: Measuring line (negative) (1) Auxiliary power (2) Compensating leads (same material as thermocouple) (3) Output (Cu wires) Figure 5-17 Connection of a thermocouple with reference junction (Order No.
Analog modules 5.13 Connecting thermocouples Connecting thermocouples using resistance thermometers Connect the resistance thermometer to channel 0 of the module. Make sure that you configure the "RTD on Channel 0" reference junction in STEP 7 for each channel that has a thermocouple connected to it.
Analog modules 5.14 Connecting loads/actuators to analog outputs 5.14 Connecting loads/actuators to analog outputs Introduction The analog output modules can be used to supply power to loads and actuators. This section contains general information that is generally applicable to all the connection options for loads and actuators described in the sections that follow. Cables for analog signals Always use shielded twisted-pair cables to wire analog signals.
Analog modules 5.15 Connecting loads/actuators to voltage outputs 5.15 Connecting loads/actuators to voltage outputs Connecting loads to a voltage output Connecting loads to a voltage output is possible both in a 4-conductor and a 2-conductor connection. Note The cables required to connect the analog output module are not drawn in the figures shown below.
Analog modules 5.
Analog modules 5.15 Connecting loads/actuators to voltage outputs 2-conductor connection of loads to a voltage output In the case of a 2-conductor connection, connect QV with S+ and MANA with S on the front connector. However, this will not provide the accuracy of a 4-conductor connection. Wire the loads to the QV terminals and to the reference point of measuring circuit MANA.
Analog modules 5.16 Connecting loads/actuators to current outputs 5.16 Connecting loads/actuators to current outputs Connecting loads to current outputs Always connect loads to QI and to the reference point of analog circuit MANA of a current output. Note The cables required to connect the analog output module are not drawn in the figure shown below.
Analog modules 5.17 Diagnostics functions of analog modules 5.17 Diagnostics functions of analog modules Programmable and non-programmable diagnostic messages We distinguish between programmable and non-programmable diagnostic messages. You only obtain programmable diagnostic messages if you have enabled the diagnostics using the relevant parameters. You perform parameter assignment in the "Diagnostics" tab in STEP 7.
Analog modules 5.
Analog modules 5.17 Diagnostics functions of analog modules Causes of errors and remedies for analog input modules Table 5- 44 Diagnostic messages of the analog input modules, causes of errors and remedies Diagnostic message Possible cause of error Remedy Module error Any, the module has detected an error. - Internal error Module has detected an error within the automation system. - External error Module has detected an error outside of the automation system.
Analog modules 5.17 Diagnostics functions of analog modules Diagnostic message Reference channel error Possible cause of error Remedy The reference junction connected at channel 0 is faulty due to a wire break, for example. Check the connections The reference temperature value transferred is not within the value range.
Analog modules 5.18 Interrupts of analog modules 5.18 Interrupts of analog modules Introduction This section describes the interrupt reaction of analog modules. There are two types of interrupt: ● Diagnostic interrupt ● Hardware interrupt Note: certain analog modules do not support interrupts, or can only partially "handle" the interrupts described below. For information on modules supporting interrupt functions, refer to their specifications.
Analog modules 5.18 Interrupts of analog modules When OB 40 is exited, the hardware interrupt is acknowledged on the module. Note Note: the system does not generate a hardware interrupt if your limit setting exceeds the overshoot or undershoot range. Structure of the start information tag OB40_POINT_ADDR of OB 40 The limit values exceeded by the different channels are entered in the start information of OB 40 in the tag OB40_POINT_ADDR.
Analog modules 5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0) 5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0) 5.19.
Analog modules 5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0) WARNING The module can be damaged. The shunt of an input channel can be destroyed if you inadvertently connect a voltage sensor to the M- /MI+ terminals of a channel. Make sure that the front connector wiring corresponds to the following wiring diagram.
Analog modules 5.
Analog modules 5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0) Specifications of the SM 431; AI 8 x 13 Bit Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 500 g Module-specific data Number of inputs 8 With resistance-type sensor 4 Cable length Shielded Max. 200 m Voltages, currents, electrical potentials Nominal load voltage L+ Not required Constant measured current for resistance-type sensor Typ. 1.
Analog modules 5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0) Noise suppression, error limits Noise suppression at F = n (f1 ± 1%) (f1 = interference frequency) n = 1, 2, ...
Analog modules 5.
Analog modules 5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0) 5.19.2 Commissioning the SM 431; AI 8 x 13 Bit Setting the operating mode You set the mode of operation of the SM 431; AI 8 x13 Bit in STEP 7. Parameters You will find a description of the general procedure for assigning parameters to analog modules in the respective sections. The table below provides an overview of configurable parameters, including defaults.
Analog modules 5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0) 5.19.3 Measuring methods and measuring ranges of SM 431; AI 8 x 13 Bit Measuring methods You can set the measuring method at the input channels: ● Voltage measurement ● Current measurement ● Resistance measurement You perform the setting with the "measuring method" parameter in STEP 7.
Analog modules 5.19 Analog input module SM 431; AI 8 x 13 Bit (6ES7431-1KF00-0AB0) Measuring ranges Set the measuring ranges at the "measuring range" parameter in STEP 7. Table 5- 47 Measuring ranges of the SM 431; AI 8 x 13 Bit Selected measuring method Measuring range Description V: Voltage ±1 V 1 V to 5 V ±10 V The digitized analog values are listed in the section "Representation of analog values for output channels" in the voltage measuring range.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) 5.20.
Analog modules 5.
Analog modules 5.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Specifications of the SM 431; AI 8 x 14 Bit Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 500 g Module-specific data Number of inputs 8 With resistance-type sensor 4 Cable length Shielded Max. 200 m In the 80 mV input range and with thermocouples Max.
Analog modules 5.
Analog modules 5.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Resistance thermocouples, 3-conductor standard measuring range – Pt 100 – Pt 200 – Pt 500 – Pt 1000 – Ni 100 – Ni 1000 – – – – – – Climatic measuring range Pt 100 Pt 200 Pt 500 Pt 1000 Ni 100 Ni 1000 ± 5.2 K ± 8.2 K ± 6.5 K ± 5.2 K ± 1.3 K ± 1.3 K ± 0.7 K ± 0.7 K ± 0.7 K ± 0.7 K ± 1.3 K ± 1.
Analog modules 5.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Status, interrupts, diagnostics Interrupts None Diagnostic functions None Injection of substitution values No Sensor selection data Input range (nominal values) / input impedance Voltage ± 80 mV / 1 MΩ ± 250 mV / 1 MΩ ± 500 mV / 1 MΩ ± 1 V / 1 MΩ ± 2.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Connection for signal sensors For voltage measurement Supported For current measurement – As 2-wire transducer – As 4-wire transducer Supported For resistance measurement – With 2-conductor connection – – With 3-conductor connection With 4-conductor connection Load of the 2-wire transducer Characteristic linearization Supported Supported: cable resistances are also measured Supported Supported Max.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) 5.20.2 Commissioning the SM 431; AI 8 x 14 Bit Setting the operating mode You set the mode of operation of the SM 431; AI 8 x 14 Bit by means of measuring range modules on the module and in STEP 7. Measuring range modules A measuring range module of the module matches two channels and one resistance channel to each type of sensor. Reposition the measuring range modules to suit the measuring method and range.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Parameters Value range RTD-3L Default setting1 Parameter type Scope Thermal resistor (linear, 3conductor connection) TC-L Thermocouple (linear) Measuring range For information on configurable measuring ranges of input channels, refer to the chapter "Measuring methods and measuring ranges of SM 431; AI 8 x 14 Bit". ± 10 V Reference temperature - 273.15 to 327.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Measured value smoothing You will find information that is generally applicable to the smoothing of analog values in the respective section. The following figure shows for the module the number of module cycles, in the case of a step response, after which the smoothed analog value is applied to almost 100%, depending on the smoothing setting. The figure applies to every change of signal at an analog input.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Circuit variants for the channels Two channels are set in each case with the measuring range module.
Analog modules 5.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Measuring ranges Set the measuring ranges using the measuring range modules, and at the "measuring method" parameter in STEP 7. Table 5- 52 Measuring ranges of the SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Selected measuring method Measuring range (type of sensor) Measuring range module settings Description V: Voltage ± 80 mV ± 250 mV ± 500 mV ±1V ± 2.
Analog modules 5.20 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF10-0AB0) Selected measuring method Measuring range (type of sensor) Measuring range module settings Description A The digitized analog values are listed in the section "Representation of analog values for analog input channels" in the resistance measuring range. The digitized analog values are listed in the section "Representation of analog values for analog input channels" in the temperature range.
Analog modules 5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0) 5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0) 5.21.
Analog modules 5.
Analog modules 5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0) Specifications of the SM 431; AI 8 x 14 Bit Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 500 g Module-specific data Number of inputs With resistance-type sensor Cable length Shielded 8 4 Max.
Analog modules 5.
Analog modules 5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0) Status, interrupts, diagnostics Interrupts None Diagnostic functions None Injection of substitution values No Sensor selection data Input range (nominal values) / input impedance Voltage ± 1 V / 10 MΩ ± 10 V / 10 MΩ 1 to 5 V / 10 MΩ Current Resistance ± 20 mA / 50 Ω 4 to 20 mA / 50 Ω Permissible voltage at voltage input (destruction limit) 0 to 600 Ω / 10 MΩ Max.
Analog modules 5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0) 5.21.2 Commissioning the SM 431; AI 8 x 14 Bit Introduction You set the mode of operation of the SM 431; AI 8 x 14 Bit by means of measuring range modules on the module and in STEP 7. Measuring range modules A measuring range module of the module matches two channels and one resistance channel to each type of sensor. Reposition the measuring range modules to suit the measuring method and range.
Analog modules 5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0) Measured value smoothing You will find information that is generally applicable to the smoothing of analog values in the respective section. You can only set strong smoothing for the SM 431; AI 8 x 14 Bit. The module cycle time is a constant, irrespective of how many channels are enabled.
Analog modules 5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0) See also General information about parameter assignment (Page 216) Measuring methods and measuring ranges of SM 431; AI 8 x 14 Bit (Page 281) 5.21.
Analog modules 5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0) Example If you select "current (2-wire transducer)" for channel 6, you can only disable the measuring method or set "current (2-wire transducer)" for channel 7.
Analog modules 5.21 Analog input module SM 431; AI 8 x 14 Bit (6ES7431-1KF20-0AB0) Selected measuring method Measuring range (type of sensor) Measuring range module settings Description 4DMU: Current (4-wire transducer) 4 to 20 mA ± 20 mA C The digitized analog values are listed in the section "Representation of analog values for analog input channels" in the current measuring range.
Analog modules 5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0) 5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0) 5.22.
Analog modules 5.
Analog modules 5.
Analog modules 5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0) Specifications of the SM 431; AI 16 x 13 Bit Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 500 g Module-specific data Number of inputs 16 Shielded Max. 200 m Voltages, currents, electrical potentials Nominal load voltage L+ 24 VDC (only required for the supply of 2wire transducers) Reverse polarity protection Transducer power supply Supply current Max.
Analog modules 5.
Analog modules 5.
Analog modules 5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0) 5.22.2 Commissioning the SM 431; AI 16 x 13 Bit Introduction You set the mode of operation of the SM 431; AI 16 x 13 Bit by means of measuring range modules on the module and in STEP 7. Measuring range modules A measuring range module of the module matches two consecutive channels to each type of sensor. Reposition the measuring range modules to suit the measuring method and range.
Analog modules 5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0) 5.22.3 Measuring methods and measuring ranges of SM 431; AI 16 x 13 Bit Measuring methods You can set the measuring method at the input channels: ● Voltage measurement ● Current measurement You specify the setting by means of the measuring range modules on the module and the "Measuring type" parameter in STEP 7. Circuit variants for the channels Two channels are set in each case with the measuring range module.
Analog modules 5.22 Analog input module SM 431; AI 16 x 13 Bit (6ES7431-0HH00-0AB0) Measuring ranges You set the measuring ranges by means of the measuring range modules on the module and the "Measuring type" parameter in STEP 7.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) 5.23.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) Block diagram of the SM 431; AI 16 x 16 Bit Meas. range module 0 CH0 CH1 I const Signal jumpering Bus control D PGA Bus S7-400 CH14 CH15 Meas.
Analog modules 5.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) Specifications of the SM 431; AI 16 x 16 Bit Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 500 g Module-specific data Number of inputs With resistance-type sensor 16 8 Cable length Shielded in the input ranges ≦ 80 mV and with thermocouples Max. 200 m Max.
Analog modules 5.
Analog modules 5.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) Resistance thermocouples, 3-conductor standard measuring range – Pt 100 – Pt 200 – Pt 500 – Pt 1000 – Ni 100 – Ni 1000 – – – – – – Climatic measuring range Pt 100 Pt 200 Pt 500 Pt 1000 Ni 100 Ni 1000 ± 4.2 K ± 6.5 K ± 5.2 K ± 4.2 K ± 1.0 K ± 1.0 K ± 0.5 K ± 0.5 K ± 0.5 K ± 0.5 K ± 1.0 K ± 1.
Analog modules 5.
Analog modules 5.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) Resistance thermometer Pt 100 / 1 MΩ Pt 200 / 1 MΩ Pt 500 / 1 MΩ Pt 1000 / 1 MΩ Ni 100 / 1 MΩ Ni 1000 / 1 MΩ Permissible voltage at voltage input (destruction limit) Max.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) 5.23.2 Commissioning the SM 431; AI 16 x 16 Bit Setting the operating mode You set the mode of operation of the SM 431; AI 16 x 16 Bit by means of measuring range modules on the module and in STEP 7. Measuring range modules A measuring range module of the module matches two channels and one resistance channel to each type of sensor. Reposition the measuring range modules to suit the measuring method and range.
Analog modules 5.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) Measured value smoothing You will find information that is generally applicable to the smoothing of analog values in the respective section. The following figure shows for the module the number of module cycles, in the case of a step response, after which the smoothed analog value is applied to almost 100%, depending on the smoothing setting. The figure applies to every change of signal at an analog input.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) See also Parameters of analog input modules (Page 217) General information about diagnostic messages (Page 99) 5.23.
Analog modules 5.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) Measuring ranges You set the measuring ranges by means of the measuring range modules on the module and the "Measuring type" parameter in STEP 7. Table 5- 66 Measuring ranges of the SM 431; AI 16 x 16 Bit Selected measuring method Measuring range (type of sensor) Measuring range module settings Description V: Voltage ± 25 mV ± 50 mV ± 80 mV ± 250 mV ± 500 mV ±1V ± 2.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) Selected measuring method Measuring range (type of sensor) Measuring range module settings Description TC-L: Thermocouple (linear) (Temperature measurement) Type B Type N Type E Type R Type S Type J Type L Type T Type K Type U A The digitized analog values are listed in the section "Representation of analog values for analog input channels" in the temperature range.
Analog modules 5.23 Analog input module SM 431; AI 16 x 16 Bit (6ES7431-7QH00-0AB0) Checking for reference channel errors when connecting thermocouples If you have connected a thermocouple, you can then enable the "Reference channel error" diagnostics if you have configured an "RTD on Channel 0" or "Reference Temperature Value" reference junction. Points to note about checking for "Underflow" with some measuring methods and measuring ranges There is now underflow in life-zero areas.
Analog modules 5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0) 5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF100AB0) 5.24.
Analog modules 5.
Analog modules 5.
Analog modules 5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0) Specifications of the SM 431; AI 8 x RTD x 16 Bit Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 650 g Module-specific data Number of inputs 8 Length of cable Shielded Max. 200 m Voltages, currents and potentials Constant current for resistive transducers Typ.
Analog modules 5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0) Operational limit (across temperature range, relative to input range) RTD input – Pt 100 – Pt 200 – Pt 500 – Pt 1000 – Ni 100 – Ni 1000 RTD-4L RTD-3L ±1.8° C ± 3.4° C ±0.8° C ± 1.7° C ±0.4° C ± 0.7° C ±0.3° C ± 0.4° C ±1.5° C ± 2.1° C ± 0.2° C ± 0.
Analog modules 5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0) Sensor selection data Input range (nominal values) / input impedance Resistance thermometer Maximum input voltage for voltage input (destruction limit) Pt 100/> 10M Pt 200/> 10M Pt 500/> 10M Pt 1000/> 10M Ni 100/> 10M Ni 1000/> 10M 35 V continuous; 75 V for max.
Analog modules 5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0) 5.24.2 Commissioning the SM 431; AI 8 x RTD x 16 Bit Setting the operating mode You set the operating mode of the SM 431; AI 8 x RTD x 16 Bit in STEP 7. Parameters You will find a description of the general procedure for assigning parameters to analog modules in the respective sections. The table below provides an overview of configurable parameters, including defaults.
Analog modules 5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0) Parameters Temperature coefficient for temperature measurement with thermal resistance (RTD) Value range Default2 0,00385 For platinum (Pt) Parameter type Scope Static Channel Static Channel 0.00385 Ω/Ω/ °C 0.003916 Ω/Ω/ °C 0.003902 Ω/Ω/ °C 0.003920 Ω/Ω/ °C For nickel (Ni) 0.00618 Ω/Ω/ °C 0.
Analog modules 5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0) Displaying parameter assignment errors The SM 431; AI 8 x RTD x 16 Bit is capable of diagnostics. Below you will find an overview of the displays that are possible for modules with parameter assignment errors.
Analog modules 5.24 Analog input module SM 431; AI 8 x RTD x 16 Bit (6ES7431-7KF10-0AB0) 5.24.3 Measuring methods and measuring ranges of the SM 431; AI 8 x RTD x 16 Bit Measuring methods You can set the temperature measurement as the measuring method for the input channels. Unused channels For unused channels, set the "measuring method" parameter to "deactivated". This reduces the module's cycle time. Measuring ranges Set the measuring ranges by means of the "Measuring range" parameter in STEP 7.
Analog modules 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) 5.25.
Analog modules 5.
Analog modules 5.
Analog modules 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) Specifications of the SM 431; AI 8 x 16 Bit Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx.
Analog modules 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) Noise suppression, error limits Noise suppression for f = nx(f1 ± 1%), (f1 = interference frequency) n = 1, 2, ... Common-mode noise (Ucm < 120 V) Current, thermocouple and voltage range < 2.5 V > 120 dB Voltage range ≥2.5 V > 95 dB Crosstalk between inputs (Ucm < 120 V) Current, thermocouple and voltage range ≥2.5 V > 120 dB Voltage range ≥2.
Analog modules 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) Noise suppression, error limits Basic error limit (operational error limit at 25° C, relative to input range) Input voltage Input current ± 0,10 % ± 0,17 % Temperature error (reference to the input range)2 across temperature range of : Type U -100° to 600° C ± 1.2° C Type L 0° to 900° C ± 1.0° C Type T -100° to 400° C ± 0.7° C Type J -100° to 1200° C ± 1.7° C Type E -100° to 1000° C ± 1.
Analog modules 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) Sensor selection data Input range (nominal values) / input impedance Voltage ± 25 mV > 2 MΩ ± 50 mV > 2 MΩ ± 80 mV > 2 MΩ ± 100 mV > 2 MΩ ± 250 mV > 2 MΩ ± 500 mV > 2 MΩ ± 1 V > 2 MΩ ± 2.5 V > 2 MΩ ± 5 V > 2 MΩ + 1 to 5 V > 2 MΩ ± 10 V > 2 MΩ Current ± 20 mA 50 Ω + 4 to 20 mA 50 Ω ± 10 mA 50 Ω ± 5 mA 50 Ω ± 3.
Analog modules 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) 5.25.2 Commissioning the SM 431; AI 8 x 16 Bit Setting the operating mode You set the operating mode of the SM 431; AI 8 x16 Bit in STEP 7. Parameters You will find a description of the general procedure for assigning parameters to analog modules in the respective sections. The table below provides an overview of configurable parameters, including defaults.
Analog modules 5.
Analog modules 5.
Analog modules 5.
Analog modules 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) Displaying parameter assignment errors The SM 431; AI 8 x 16 Bit has diagnostics capability. Below you will find an overview of the displays that are possible for modules with parameter assignment errors.
Analog modules 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) 5.25.3 Measuring methods and measuring ranges of SM 431; AI 8 x 16 Bit Measuring methods You can set the measuring method at the input channels: ● Voltage measurement ● Current measurement ● Temperature measurement You perform the setting with the "measuring method" parameter in STEP 7. Unused channels For unused channels, set the "measuring method" parameter to "deactivated". This reduces the module's cycle time.
Analog modules 5.25 Analog input module SM 431; AI 8 x 16 Bit (6ES7431-7KF00-0AB0) Default The default settings of the module in STEP 7 are "Thermocouple (linear)" for the measuring method and "Type J" for the measuring range. You can use this combination of measuring method and measuring range without configuring the SM 431; AI 8 x 16 Bit in STEP 7.
Analog modules 5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0) 5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0) 5.26.
Analog modules 5.
Analog modules 5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0) Specifications of the SM 432; AO 8 x 13 Bit Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight Approx. 650 g Module-specific data Number of outputs 8 Cable length Shielded Max.
Analog modules 5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0) Formation of analog values Resolution (including overshoot range) 13 bits Conversion time (per channel) In the ranges 1 to 5 V and 4 to 20 mA 420 µs In all ranges 300 µs Basic execution time of the module (all channels enabled) In the ranges 1 to 5 V and 4 to 20 mA 3.36 ms In all the other ranges 2.4 ms Settling time With resistive load 0.1 ms With capacitive load 3.
Analog modules 5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0) Actuator selection data Output ranges (nominal values) Voltage ± 10 V0 to 10 V1 to 5 V Current ± 20 mA 0 to 20 mA 4 to 20 mA Load impedance (in the nominal range of the output) For voltage outputs – Capacitive load Min. 1 kΩ For current outputs – Inductive load Max. 500 Ω Max. 1 µF 600 Ω with reduced UCM to < 1 V Max. 1 mH Voltage output Short-circuit protection Yes Short-circuit current Max.
Analog modules 5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0) 5.26.2 Commissioning the SM 432; AO 8 x 13 Bit Parameters You will find a description of the general procedure for assigning parameters to analog modules in the respective sections. For an overview of configurable parameters and defaults, refer to the "Parameters of analog output modules" table. Assigning parameters to channels The parameters can be set separately at each output channel of SM 432; AO 8 x 13 Bit.
Analog modules 5.26 Analog output module SM 432; AO 8 x 13 Bit (6ES7432-1HF00-0AB0) Default The output type "Voltage" and output range "± 10 V" are set by default at the module. You can always use this combination of output type and range without having to program the SM 432; AO 8 x 13 Bit in STEP 7.
Analog modules 5.
6 Interface modules 6.1 Common features of the interface modules Function Interface modules (a send IM and a receive IM) are required if one or more expansion racks (ER) are to be connected to a central rack (CR). This configuration is described in the Installation manual. Configuration Interface modules must always be used together. The send modules (send IMs) are inserted in the CR, whilst the corresponding receive modules (receive IMs) are plugged into the series-connected ER.
Interface modules 6.1 Common features of the interface modules Connection possibilities for central racks and expansion racks Central rack CR IM 460-4 IM 460-3 IM 460-1 IM 460-0 Expansion without 5 V local transfer Expansion rack ER 1 Expansion rack ER 4 IM 461-0 IM 461-0 Chain length max. 5 m Expansion without 5 V local transfer Expansion rack ER 1 IM 461-1 Chain length max. 1,5 m Remote expansion Expansion rack ER 1 Expansion rack ER 4 IM 461-3 IM 461-3 Chain length max.
Interface modules 6.1 Common features of the interface modules Rules for connection When you connect a central rack to expansion racks, you must observe the following rules: ● You can connect up to 21 ERs of the S7-400 to one CR. ● The ERs are assigned numbers to identify them. The rack number must be set on the coding switch of the receive IM. Any rack number between 1 and 21 may be assigned. Numbers must not be duplicated. ● You may insert up to six send IMs in one CR.
Interface modules 6.1 Common features of the interface modules The following figure shows you a typical configuration with send IMs, receive IMs and terminators.
Interface modules 6.1 Common features of the interface modules Cables Precut cables are available in different fixed lengths for connecting the individual interface modules. (See Appendix "Accessories and spare parts"). Table 6- 5 Cables for interface modules Interface modules IM 460-0 and IM 461-0 Cables 6ES7468-1... (P bus and communication bus are transferred) IM 460-3 and IM 461-3 IM 460-1 and IM 461-1 6ES7468-3...
Interface modules 6.2 Interface modules IM 460-0 (6ES7 460-0AA01-0AB0) and IM 461-0 (6ES7 461-0AA01-0AA0) 6.2 Interface modules IM 460-0 (6ES7 460-0AA01-0AB0) and IM 461-0 (6ES7 461-0AA01-0AA0) Function The interface module pair IM 460-0 (send IM) and IM 461-0 (receive IM) are used for a local link.
Interface modules 6.2 Interface modules IM 460-0 (6ES7 460-0AA01-0AB0) and IM 461-0 (6ES7 461-0AA01-0AA0) Operator controls and indicators on the send IM Table 6- 6 Operator controls and indicators on the send IM LEDs Meaning EXTF LED (red) Lights up in the event of an external fault. Line 1 or line 2 is faulty (terminator missing or broken cable) C1 LED (green) Line 1 (via front connector x1, connection 1) is correct.
Interface modules 6.2 Interface modules IM 460-0 (6ES7 460-0AA01-0AB0) and IM 461-0 (6ES7 461-0AA01-0AA0) Specifications of the IM 460-0 and IM 461-0 Maximum line length (total) 5m Dimensions W x H x D (mm) 25 x 290 x 280 Weight IM 460-0 IM 461-0 600 g 610 g Current consumption from the S7-400 bus 5 VDC IM 460-0 Typ. 130 mA Max. 140 mA IM 461-0 Typ. 260 mA Max. 290 mA Power loss 350 IM 460-0 Typ. 650 mW Max. 700 mW IM 461-0 Typ. 1300 mW Max.
Interface modules 6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1 (6ES7461-1BA01-0AA0) 6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1 (6ES7461-1BA01-0AA0) Function The interface module pair IM 460-1 (send IM) and IM 461-1 (receive IM) are used for a local link (up to a maximum 1.5 m in total). A 5 V supply voltage is also transferred with these interface modules.
Interface modules 6.
Interface modules 6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1 (6ES7461-1BA01-0AA0) Operator controls and indicators on the send IM Table 6- 8 Operator controls and indicators on the send IM LEDs Meaning EXTF LED (red) Lights up in the event of an external fault. Line 1 or line 2 is faulty (terminator missing or broken cable) C1 LED (green) Line 1 (via front connector x1, connection 1) is correct.
Interface modules 6.3 Interface modules IM 460-1 (6ES7460-1BA01-0AB0) and IM 461-1 (6ES7461-1BA01-0AA0) Setting/changing the number Proceed as follows: 1. Set the power supply module in the CR to the position (Output voltage 0 V). 2. Enter the number using the DIP switch. 3. Switch the power supply module on again. Specifications of the IM 460-1 and IM 461-1 Maximum line length (total) 1.
Interface modules 6.4 Interface modules IM 460-3 (6ES7460-3AA01-0AB0) and IM 461-3 (6ES7461-3AA01-0AA0) 6.4 Interface modules IM 460-3 (6ES7460-3AA01-0AB0) and IM 461-3 (6ES7461-3AA01-0AA0) Function The interface module pair IM 460-3 (send IM) and IM 461-3 (receive IM) are used for a remote link of up to a maximum 102.25 m (exactly: 100 m plus inputs/outputs of 0.75 m in the line).
Interface modules 6.4 Interface modules IM 460-3 (6ES7460-3AA01-0AB0) and IM 461-3 (6ES7461-3AA01-0AA0) Operator controls and indicators on the send IM Table 6- 10 Operator controls and indicators on the send IM LEDs Meaning EXTF LED (red) Lights up in the event of an external fault. Line 1 or line 2 is faulty (terminator missing or broken cable) C1 LED (green) Line 1 (via front connector x1, connection 1) is correct.
Interface modules 6.4 Interface modules IM 460-3 (6ES7460-3AA01-0AB0) and IM 461-3 (6ES7461-3AA01-0AA0) Setting/changing the number Proceed as follows: 1. Set the switch of the power supply module in the EU in which you want to make the change to the position (Output voltage 0 V). 2. Enter the number using the DIP switch. 3. Switch the power supply module on again. Specifications of the IM 460-3 and IM 461-3 Maximum line length (total) 102.
Interface modules 6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4; (6ES7461-4AA01-0AA0) 6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4; (6ES7461-4AA01-0AA0) Function The interface module pair IM 460-4 (send IM) and IM 461-4 (receive IM) are used for a remote link of up to a maximum 605 m (exactly: 600 m plus inputs/outputs of 1.5 m in the line).
Interface modules 6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4; (6ES7461-4AA01-0AA0) Operator controls and indicators on the send IM Table 6- 12 Operator controls and indicators on the send IM LEDs Meaning EXTF LED (red) Lights up in the event of an external fault. Line 1 or line 2 is faulty (terminator missing or broken cable) C1 LED (green) Line 1 (via front connector x1, connection 1) is correct.
Interface modules 6.5 Interface modules IM 460-4; (6ES7460-4AA01-0AB0) and IM 461-4; (6ES7461-4AA01-0AA0) Setting/changing the number Proceed as follows: 1. Set the switch of the power supply module in the EU in which you want to make the change to the position (Output voltage 0 V). 2. Enter the number using the DIP switch. 3. Switch the power supply module on again.
S5 interface IM 463-2 7.1 7 Using SIMATIC S5 expansion units in an S7-400 Order number 6ES7463-2AA00-0AA0 Area of application The IM 463-2 interface module is used for distributed connection of S5 expansion units to an S7-400. You can use the IM 463-2 in the CR of the S7-400. You can use an IM 314 in the S5 expansion unit.
S5 interface IM 463-2 7.1 Using SIMATIC S5 expansion units in an S7-400 CAUTION Data may be lost or corrupted. Removing or inserting the IM 463-2 and/or their associated cables under voltage can result in the loss or corruption of data. Switch off the power supply modules to the central rack you are working on before you carry out any changes. Expanding the distributed connection You can also centrally expand the EUs connected in a distributed configuration via an IM 463-2.
S5 interface IM 463-2 7.2 Rules for connecting S5 expansion units 7.2 Rules for connecting S5 expansion units Introduction When you connect S5 expansion units to an S7-400 via the IM 463-2, there are rules to observe with regard to cable length, maximum expansion, use of a terminating connector and permissible potential differences. Cable length The maximum cable length per IM 463-2 from the CR of the S7-400 to the last S5 expansion unit is 600 m. You set the actual cable length at the IM 463-2.
S5 interface IM 463-2 7.3 Operator controls and indicators 7.3 Operator controls and indicators Introduction All controls and indicators on the IM 463-2 are arranged on the front plate. The following figure shows the arrangement of the controls and indicators. IM 463-2 X 463-2AA..-....
S5 interface IM 463-2 7.3 Operator controls and indicators LEDs Table 7- 2 LEDs of the IM 463-2 LED Meaning EXTF LED (red) Lights up in the event of an external fault. Line 1 or line 2 has a fault (power supply failed in the EU; terminating connector missing; wire break, or interface selector switch wrongly set). C1 LED (green) Line 1 (via front connector x1, connection 1) is correct. C2 LED (green) Line 2 (via front connector x2, connection 2) is correct.
S5 interface IM 463-2 7.4 Installing and connecting the IM 463-2 7.4 Installing and connecting the IM 463-2 Overview To install an IM 463-2 in a CR of the S7-400, proceed in the same way as when installing other S7-400 modules (see Installation manual). To connect an IM 463-2, follow the steps outlined below: 1. Prepare the cable 2. Plug in the cable 3. Select the interface 4. Select the cable length Prepare the cable You can use the cable 721.
S5 interface IM 463-2 7.5 Setting the operating modes of the IM 314 7.5 Setting the operating modes of the IM 314 Introduction To operate the IM 463-2, you must set on the IM 314 the S5 expansion unit used and the address area of the S5 I/O modules.
S5 interface IM 463-2 7.5 Setting the operating modes of the IM 314 Setting the S5 expansion unit You set the S5 expansion unit in which you want to use the IM 314 using jumpers BR1, BR2, and BR3 on the IM 314. The following figure shows where these jumpers are located on the IM 314 and which setting corresponds to which expansion unit.
S5 interface IM 463-2 7.5 Setting the operating modes of the IM 314 4 3 2 1 4 3 2 1 S1 BR 1 Used in ER 701-2, ER 701-3 off on BR 2 X3 4321 X1 BR 3 X4 X2 Setting the address area The address area of the S5 I/O modules is set on the IM 314. This setting applies only for the digital and analog I/O modules. The address areas P, Q, IM3, and IM4 are available. Set the switch to the relevant position to address the digital and analog I/O modules in these areas.
S5 interface IM 463-2 7.6 Configuring S5 modules for operation in the S7-400 7.6 Configuring S5 modules for operation in the S7-400 Example You program S5 modules in STEP 7. Refer to the description in the STEP 7 manual or the online help to learn how this is done. The following figure shows a possible connection of CRs and EUs via the IM 463-2 and IM 314.
S5 interface IM 463-2 7.
S5 interface IM 463-2 7.7 Pin assignments of the 721 cable 7.7 Pin assignments of the 721 cable Pin assignments of the 721 cable Table 7- 7 Pin assignments of the 721 cable 34 50 17 1 1 17 50 34 Connector 50-pin Bundle ID sheath Identification foil Contact Connector 50-pin Contact 20 white 20 21 brown 21 4 5 1 18 No. 16 Red green 4 yellow 5 gray 18 19 pink 19 2 blue 2 3 red 3 24 white 24 25 brown 25 8 372 Core color 9 2 22 No.
S5 interface IM 463-2 7.7 Pin assignments of the 721 cable 34 white 34 brown 35 green 36 yellow 37 38 gray 38 39 pink 39 40 blue 40 41 red 41 48 white 48 brown 49 green 14 yellow 15 32 gray 32 33 pink 33 35 36 37 5 No. 20 black 49 14 6 15 No.
S5 interface IM 463-2 7.8 Terminating connector for IM 314 7.8 Terminating connector for IM 314 Introduction Table 7- 8 The IM 314 of the last expansion unit of each line is terminated with the 6ES5760-1AA11 terminating connector.
S5 interface IM 463-2 7.9 Specifications IM463-2 (6ES7463-2AA00-0AA0) 7.9 Specifications IM463-2 (6ES7463-2AA00-0AA0) Specifications Programming package Associated programming package As of STEP 7 V 2.1 Dimensions and weight Dimensions W x H x D (mm) 25x290x280 Weight 360 g Module-specific data Number and type of interfaces 2 parallel, 2 symmetrical interfaces Cable length: Max.
S5 interface IM 463-2 7.
PROFIBUS DP master interface IM 467/IM 467 FO 8.1 PROFIBUS DP master interface IM 467/IM 467 FO 8.1.1 Overview 8 Order numbers IM 467 6ES7467-5GJ02-0AB0 (RS 485) IM 467 FO 6ES7467-5FJ00-0AB0 (F0) Application PROFIBUS DP, standardized in accordance with IEC 61784-1:2002 Ed1 CP 3/1, enables rapid communication in the field between programmable controllers, PCs and field devices. Field devices are devices such as: ET 200 distributed I/O devices, drives, valve terminals, switchgear and many others.
PROFIBUS DP master interface IM 467/IM 467 FO 8.
PROFIBUS DP master interface IM 467/IM 467 FO 8.1 PROFIBUS DP master interface IM 467/IM 467 FO Communication services The IM 467/IM 467 FO offers two communication services: ● PROFIBUS DP The IM 467/IM 467 FO is a PROFIBUS DP master in accordance with EN 50 170. It is configured entirely with STEP 7. It behaves in basically the same way as the integrated PROFIBUS DP interfaces on the CPU modules (see the specifications of the IM 467/IM 467 FO for the differences).
PROFIBUS DP master interface IM 467/IM 467 FO 8.1 PROFIBUS DP master interface IM 467/IM 467 FO 8.1.
PROFIBUS DP master interface IM 467/IM 467 FO 8.1 PROFIBUS DP master interface IM 467/IM 467 FO Mode selector You can switch operating modes as follows using the mode selector: ● From STOP to RUN All the configured communication services and S7 communication services are available in RUN. The IM operating mode can only be controlled from the programming device/PC when the switch is in the RUN position. ● From RUN to STOP The IM goes into STOP mode.
PROFIBUS DP master interface IM 467/IM 467 FO 8.2 Configuration 8.2 Configuration Introduction The IM 467/IM 467 FO is configured with STEP 7. The configuration data are retained even in the event of a power failure; a memory module is not required. Using the S7 functions it is possible to program and configure remotely all the IM 467/IM 467 FO connected to the network and all the CPUs connected via the SIMATIC S7-400 backplane bus. SIMATIC STEP 7, version 5.00 or higher is required.
PROFIBUS DP master interface IM 467/IM 467 FO 8.3 Connection to PROFIBUS DP 8.3 Connection to PROFIBUS DP 8.3.1 Connection options Overview There are two ways of connecting to PROFIBUS DP: ● Electrical connection via a bus connector ● Optical connection using a fiber-optic cable 8.3.2 Bus connector Wiring Only with 6ES7467-5GJ02-0AB0. The bus cable is connected to the IM 467 by means of this connector.
PROFIBUS DP master interface IM 467/IM 467 FO 8.3 Connection to PROFIBUS DP Maximum cable lengths for PROFIBUS DP Transmission speed in Kbps 9,6 19,2 93,75 187,5 500 1500 3000 6000 12000 Max. length of a bus segment in m 1.000 1.000 1.000 1.000 400 200 100 100 100 Max. number of bus segments 1 10 10 10 10 10 10 10 10 10 2.000 1.000 1.000 1.000 Max. length in m 1 10.000 10.000 10.000 10.000 4.
PROFIBUS DP master interface IM 467/IM 467 FO 8.3 Connection to PROFIBUS DP 8.3.3 Optical connection to PROFIBUS DP Wiring Only in the case of 6ES7467-5FJ00-0AB0. The IM 467 F0 with an integrated fiber-optic cable interface is available for connecting to the optical version of PROFIBUS DP. CP43-5 X2 3E04 443-5FX00-0X IEN XTTFF R N STU O P RU N STO P AU I/TP 1 (1) PROFIBUS DP bus cable Figure 8-4 8.3.
PROFIBUS DP master interface IM 467/IM 467 FO 8.3 Connection to PROFIBUS DP Installing connectors 1. Remove approximately 30 cm of the sheath of the fiber-optic duplex cable. 2. Install the fiber-optic duplex cable with the associated simplex connectors. You can find a detailed description of simplex connectors in the SIMATIC NET PROFIBUS Networks manual. TIP: Close the two simplex connectors together rather than separately to obtain a duplex connector.
PROFIBUS DP master interface IM 467/IM 467 FO 8.3 Connection to PROFIBUS DP Reusing fiber-optic cable Note If you insert previously used fiber-optic cable into the plug adapter, you must shorten both fiber-optic cores by the amount of the curved lengths and reinstall the simplex connectors. This will prevent any attenuation losses caused by repeatedly bent, heavily stressed portions of the fiber-optic duplex core.
PROFIBUS DP master interface IM 467/IM 467 FO 8.3 Connection to PROFIBUS DP Bending radius for the fiber-optic cable When placing the fiber-optic duplex core into the plug adapter and routing the cable, be sure not to exceed the permissible bending radius of 30 mm. See also the installation guidelines on fiber-optic cables in the SIMATIC NET PROFIBUS Networks manual.
PROFIBUS DP master interface IM 467/IM 467 FO 8.4 Specifications 8.4 Specifications 8.4.1 Specifications of the IM 467 (6ES7467-5GJ02-0AB0)) Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight 700 g PROFIBUS DP Standard PROFIBUS DP, EN 50 170 Transmission rate 9.
PROFIBUS DP master interface IM 467/IM 467 FO 8.4 Specifications Deviations from the DP interface integrated in the CPU 8.4.2 Different SSL IDs for system diagnostics Possibly extended SFC run times Additional return codes for SFC 14 and SFC 15 Specifications of the IM 467 FO (6ES7467-5FJ00-0AB0) Dimensions and weight Dimensions W x H x D (mm) 25 x 290 x 210 Weight 700 g PROFIBUS DP Standard PROFIBUS DP, EN 50 170 Transmission rate 9.
PROFIBUS DP master interface IM 467/IM 467 FO 8.4 Specifications Consistency Max.
PROFIBUS DP master interface IM 467/IM 467 FO 8.
Cable duct and fan subassemblies 9.1 9 Features Overview The cable duct and the fan subassembly have the following characteristics ● The air inflow area is variable. ● Shield and cable clamping are possible. In addition, the fan subassembly has the following characteristics: ● Fans and filter frames can be replaced from the front during operation. ● The fan function is controlled by means of speed monitoring. ● Operation with filter frames is optional.
Cable duct and fan subassemblies 9.2 Fan monitoring in the fan subassemblies 9.2 Fan monitoring in the fan subassemblies LEDs The three red LEDs of the fan subassembly are assigned to the individual fans. From left to right, these are: F1 - for fan 1 F2 - for fan 2 F3 - for fan 3 Fans The fans have a redundant design. The fan subassembly continues to function even if one fan fails. Fan monitoring The function of the fans is controlled by means of speed monitoring.
Cable duct and fan subassemblies 9.2 Fan monitoring in the fan subassemblies Example of a message concept You can check the fault-free functioning of the fan subassembly using digital inputs. You can cause the power supply to be cut off after the failure of at least two fans by using the relay K2. For example, you can use an intermediate contactor to interrupt the mains. The relay contacts are labeled as follows: Relay K1: No. 1 to 3 Relay K2: No.
Cable duct and fan subassemblies 9.3 Cable duct (6ES7408-0TA00-0AA0) 9.3 Cable duct (6ES7408-0TA00-0AA0) Function The cable duct is used when installing outside a cabinet for ● clamping cables and/or for ● shielding or for ● air inlet without fan support Front view of the cable duct Eye for clamping cable Shield clamp (Side elevation Scale 1:1) Figure 9-2 Front view of the cable duct Shielding clamps If you do not require the shielding clamps supplied, do not install them in the cable duct.
Cable duct and fan subassemblies 9.4 The 120/230 VAC fan subassembly (6ES7408-1TB00-0XA0) 9.
Cable duct and fan subassemblies 9.4 The 120/230 VAC fan subassembly (6ES7408-1TB00-0XA0) Installation Follow to the general installation guidelines when mounting the 24 V DC fan subassembly, see Installation manual. Specifications Dimensions, weights Dimensions W x H x D (mm) 482.5 x 109.5 x 235 Weight Approx. 2000 g Cable cross-section 0.5 to 2.5 mm² (litz with connector sleeve) Electrical parameters Lifespan of the fans at 40 °C Typ. 70 000 h Max.
Cable duct and fan subassemblies 9.4 The 120/230 VAC fan subassembly (6ES7408-1TB00-0XA0) CAUTION Danger of damage to equipment. If you mix up the power supply PCB and the monitoring PCB in the fan subassembly, the fan subassembly may be damaged. During maintenance of the unit, make sure you do not mix up the power supply PCB and the monitoring PCB. Monitoring function In the case of a fault (defective fans) the fans are not switched off.
Cable duct and fan subassemblies 9.5 The 24 V DC fan subassembly (6ES7408-1TA01-0XA0) 9.
Cable duct and fan subassemblies 9.5 The 24 V DC fan subassembly (6ES7408-1TA01-0XA0) Fuse Included in this fan subassembly are standard cartridge fuse links, 5 x 20 mm, conforming to DIN ● 1.0 AT for 24 V The fuse is already installed on shipping from the factory. Shielding clamps If you do not require the shielding clamps supplied, do not install them in the fan subassembly. Installation Follow to the general installation guidelines when mounting the 24 V DC fan subassembly, see Installation manual.
Cable duct and fan subassemblies 9.5 The 24 V DC fan subassembly (6ES7408-1TA01-0XA0) CAUTION Danger of damage to equipment. If you insert the monitoring PCB in the wrong position in the fan subassembly, the fan subassembly may be damaged. During maintenance of the unit, make sure you do not insert the replacement monitoring PCB in the wrong position. Monitoring function In the case of a fault (defective fans) the fans are not switched off.
RS 485 repeater 10.1 10 Introduction Overview This section describes the RS 485 repeater in detail.
RS 485 repeater 10.2 Applications and features (6ES7972-0AA01-0XA0) 10.2 Applications and features (6ES7972-0AA01-0XA0) Application of the RS 485 repeater The RS 485 repeater amplifies data signals on bus lines and couples bus segments. You need an RS 485 repeater for the following situations: ● There are more than 32 nodes connected to the bus. ● Bus segments should be operated ungrounded on the bus. ● The maximum cable length of a segment is exceeded.
RS 485 repeater 10.3 Design of the RS 485 repeater (6ES7972-0AA01-0XA0) 10.3 Design of the RS 485 repeater (6ES7972-0AA01-0XA0) Design The table below shows the design and functions of the RS 485 repeater. Description and functions of the RS 485 repeater DC 24 V L+ M PEM 5.2 1 2 12 3 A1B1 A1 B1 PG OP 11 ON 4 DP1 6 DP2 8 ON SIEMENS RS 485-REPEATER A2 B2A2 B2 5 7 9 2 10 (1) Connection for the RS 485 repeater power supply (pin "M5.
RS 485 repeater 10.4 RS 485 repeater in ungrounded and grounded operation 10.
RS 485 repeater 10.4 RS 485 repeater in ungrounded and grounded operation Connection scheme In a repeater configuration with ungrounded reference potential (ungrounded operation), any interference currents and static charges are discharged to the protective conductor by means of an RC network integrated in the repeater (refer to the figure below). DC L+ M PE M 5.
RS 485 repeater 10.4 RS 485 repeater in ungrounded and grounded operation Electrical isolation between bus segments Bus segments 1 and 2 are electrically isolated. The PG/OP interface is connected internally to the port for bus segment 1. The figure below shows the front panel of the RS 485 repeater. DC 24 V L+ M PE M 5.
RS 485 repeater 10.5 Specifications 10.5 Specifications Specifications of the RS 485 repeater Specifications Dimensions W x H x D (mm) 45 x 128 x 67 Power supply Nominal voltage 24 VDC Ripple 20.4 to 28.
RS 485 repeater 10.5 Specifications Block diagram of the RS 485 repeater ● Bus segments 1 and 2 are electrically isolated. ● Bus segment 2 and the PG/OP socket are electrically isolated from each other. ● Signals are amplified – Between bus segments 1 and 2 – Between PG/OP socket and bus segment 2 Segment 1 A1 B1 A1' B1' Segment 2 A2 B2 A2' B2' Logic + OFF OFF ON ON + PG/OPsocket L+ (24 V) M A1 B1 5V M5 V Figure 10-3 410 5V 24 V + - 1M 5V 24 V 1M L+ (24 V) M PE M 5.
A Parameter sets of signal modules A.1 How to assign the parameters for signal modules in the user program Parameter assignment in the user program You have already assigned parameters to the modules in STEP 7. In the user program, you can use an SFC: ● To assign new parameters to the module ● To transfer the parameters from the CPU to the addressed signal module Parameters stored in data records The signal module parameters are stored in data records 0 and 1.
Parameter sets of signal modules A.1 How to assign the parameters for signal modules in the user program Description of the parameters The next chapters describe all modifiable parameters of the various module classes. The parameters of the signal modules are described: ● In the online help of STEP 7 ● In this reference manual The sections dealing with the various signal modules also show you the corresponding configurable parameters.
Parameter sets of signal modules A.2 Parameters of digital input modules A.2 Parameters of digital input modules Parameters The table below lists the parameters you can set for digital input modules. The comparison illustrates the parameters you can edit: ● In STEP 7 ● Using SFC 55 "WR_PARM" The parameters set with STEP 7 can also be transferred with SFCs 56 and 57 to the module (refer to the STEP 7 manuals).
Parameter sets of signal modules A.
Parameter sets of signal modules A.
Parameter sets of signal modules A.3 Parameters of digital output modules A.3 Parameters of digital output modules Parameters The table below contains all parameters you can set for digital output modules. The comparison shows: ● Which parameters you can change with STEP 7 and ● Which parameters you can change using SFC 55 "WR_PARM". The parameters set with STEP 7 can also be transferred with SFCs 56 and 57 to the module (refer to the STEP 7 manuals).
Parameter sets of signal modules A.
Parameter sets of signal modules A.4 Parameters of analog input modules A.4 Parameters of analog input modules Parameters The table below lists all parameters you can set for analog input modules. The comparison illustrates the parameters you can edit: ● In STEP 7 ● Using SFC 55 "WR_PARM" The parameters set with STEP 7 can also be transferred with SFCs 56 and 57 to the module (refer to the STEP 7 manuals). Table A- 8 Parameters of analog input modules Parameters Data record no.
Parameter sets of signal modules A.4 Parameters of analog input modules Structure of data record 1 The figure below shows the structure of data record 1 for the parameters of analog input modules. You enable a parameter by setting a logical "1" at the corresponding bit.
Parameter sets of signal modules A.
Diagnostic data of signal modules B.1 B Evaluating diagnostic data of signal modules in the user program This section This section describes the diagnostic data structure in system data. You must be familiar with this configuration if you want to evaluate the diagnostic data of the signal module in the STEP 7 user program. Diagnostic data stored in data records Module diagnostic data may have a length of max.
Diagnostic data of signal modules B.2 Structure and contents of diagnostic data bytes 0 and 1 B.2 Structure and contents of diagnostic data bytes 0 and 1 Overview The section below describes the structure and content of the various bytes in diagnostic data. General rule: When an error occurs, the bit concerned is set to "1".
Diagnostic data of signal modules B.3 Diagnostic data of the digital input modules as of byte 2 B.3 Diagnostic data of the digital input modules as of byte 2 Overview The structure and contents of the different bytes of the diagnostic data for special digital input modules are described below. General rule: When an error occurs, the bit concerned is set to "1". You will find a description of possible error causes and appropriate remedies in the section "Diagnostics of the modules".
Diagnostic data of signal modules B.
Diagnostic data of signal modules B.3 Diagnostic data of the digital input modules as of byte 2 Bytes 9 to 24 of the SM 421; DI 16 x DC 24 V Data record 1 contains the channel-specific diagnostic data, starting at bytes 9 to 24. The figure below shows the assignment of the diagnostic byte for a channel of the module.
Diagnostic data of signal modules B.
Diagnostic data of signal modules B.3 Diagnostic data of the digital input modules as of byte 2 Bytes 9 to 24 of the SM 421; DI 16 x UC 24/60 V Data record 1 contains the channel-specific diagnostic data, starting at bytes 9 to 24. The figure below shows the assignment of the diagnostic byte for a channel of the module.
Diagnostic data of signal modules B.4 Diagnostic data of the digital output modules as of byte 2 B.4 Diagnostic data of the digital output modules as of byte 2 Overview The structure and contents of the different bytes of the diagnostic data for special digital output modules are described below. General rule: When an error occurs, the bit concerned is set to "1". You will find a description of possible error causes and appropriate remedies in the section on the special module.
Diagnostic data of signal modules B.4 Diagnostic data of the digital output modules as of byte 2 Bytes 4 and 8 of the SM 422; DO 16 x DC 20-125 V/1.5 A Table B- 10 Bytes 4 to 8 of the diagnostic data of the SM 422; DO 16 x DC 20-125 V/1.
Diagnostic data of signal modules B.4 Diagnostic data of the digital output modules as of byte 2 Bytes 9 and 24 of the SM 421; DO 16 x DC 20-125 V/1.5 A Data record 1 contains the channel-specific diagnostic data, starting at bytes 9 to 24. The figure below shows the assignment of the diagnostic byte for a channel of the module. Table B- 11 Byte Bytes 9 - 24 Diagnostic byte for a channel of the SM 422; DO 16 x DC 20-125 V/1.
Diagnostic data of signal modules B.4 Diagnostic data of the digital output modules as of byte 2 Bytes 4 to 10 of the SM 422; DO 32 x DC 24 V/0.5 A Table B- 13 Bytes 4 to 10 of the diagnostic data of the SM 422; DO 32 x DC 24 V/0.
Diagnostic data of signal modules B.4 Diagnostic data of the digital output modules as of byte 2 Byte Byte 9 Byte 10 Bit Meaning 7 Channel error 23 6 Channel error 22 5 ... 4 ... 3 ... 2 ... 1 Channel error 17 0 Channel error 16 7 Channel error 31 6 Channel error 30 5 ... 4 ... 3 ... 2 ... 1 Channel error 25 0 Channel error 24 Bytes 11 to 42 of the SM 422; DO 32 x DC 24 V/0.5 A Data record 1 contains the channel-specific diagnostic data, starting at bytes 11 to 42.
Diagnostic data of signal modules B.
Diagnostic data of signal modules B.4 Diagnostic data of the digital output modules as of byte 2 Byte Bit Meaning Byte 6 Number of channels of the same type in one module: 16 channels 7 Byte 7 7 Channel error 7 6 Channel error 6 5 ... 4 ... 3 ... 2 ... 1 Channel error 1 0 Byte 8 0 Channel error 0 7 Channel error 15 6 Channel error 14 5 ... 4 ... 3 ... 2 ...
Diagnostic data of signal modules B.5 Diagnostic data of the analog input modules as of byte 2 B.5 Diagnostic data of the analog input modules as of byte 2 Overview The structure and contents of the different bytes of the diagnostic data for the special analog input modules are described below. General rule: When an error occurs, the bit concerned is set to "1". You will find a description of possible error causes and appropriate remedies in the section on the special module.
Diagnostic data of signal modules B.
Diagnostic data of signal modules B.5 Diagnostic data of the analog input modules as of byte 2 Bytes 9 to 24 of the SM 431; AI 16 x 16 bit Data record 1 contains the channel-specific diagnostic data, starting at bytes 9 to 24. The figure below shows the assignment of the diagnostic byte for a channel of the module.
Diagnostic data of signal modules B.
Diagnostic data of signal modules B.5 Diagnostic data of the analog input modules as of byte 2 Bytes 8 and 23 of the SM 431; AI 8 x RTD x 16 bit Data record 1 contains the channel-specific diagnostic data, starting at bytes 8 to 23. The following table shows the assignment of the even diagnostic bytes (bytes 8, 10, to 22) for a channel of the module.
Diagnostic data of signal modules B.
Diagnostic data of signal modules B.5 Diagnostic data of the analog input modules as of byte 2 Byte Byte 7 Bit 7 Channel error 7 Meaning 6 Channel error 6 5 ...... 4 ...... 3 ...... 2 ...... 1 Channel error 1 0 Channel error 0 Bytes 8 to 23 of the SM 431; AI 8 x 16 bit Data record 1 contains the channel-specific diagnostic data, starting at bytes 8 to 23. The following table shows the assignment of the even diagnostic bytes (bytes 8, 10, to 22) for a channel of the module.
Diagnostic data of signal modules B.
C Accessories and spare parts C.
Accessories and spare parts C.1 Accessories and spare parts Accessories - spare parts Order number IM cable with communication bus, 5 m 6ES7468-1BF00-0AA0 IM cable with communication bus, 10 m 6ES7468-1CB00-0AA0 IM cable with communication bus, 25 m 6ES7468-1CC50-0AA0 IM cable with communication bus, 50 m 6ES7468-1CF00-0AA0 IM cable with communication bus, 100 m 6ES7468-1DB00-0AA0 IM cable with current transmission, 0,75 m 6ES7468-3AH50-0AA0 IM cable with current transmission, 1.
Accessories and spare parts C.
Accessories and spare parts C.
Directive on handling electrostatic sensitive devices (ESD) D.1 D ESD: What are the directives for handling electrostatic sensitive devices? Definition All electronic modules are equipped with large-scale integrated ICs or components. Due to their design, these electronic components are highly sensitive to overvoltage, and thus to any electrostatic discharge. These Electrostatic Sensitive Devices/Modules are commonly abbreviated ESD.
Directive on handling electrostatic sensitive devices (ESD) D.2 Electrostatic charging of persons D.2 Electrostatic charging of persons Electrostatic charging Any person with a non-conductive connection to the electrical potential of its surroundings may be exposed to electrostatic charge. The figure shows the maximum electrostatic voltage which may build up on a person coming into contact with the materials indicated. These values are in conformity with the specifications of IEC 61000-4-2.
Directive on handling electrostatic sensitive devices (ESD) D.3 Basic protective measures against electrostatic discharge D.3 Basic protective measures against electrostatic discharge Ensure sufficient grounding Make sure all persons, workplaces and packaging are sufficiently grounded when ESD components are being handled. This prevents electrostatic charging. Avoid direct contact You should only touch ESD components if this is unavoidable (for example, during maintenance work).
Directive on handling electrostatic sensitive devices (ESD) D.
E List of abbreviations E.
List of abbreviations E.
List of abbreviations E.
List of abbreviations E.
Glossary 2-conductor/3-conductor/4-conductor connection Method of connecting to the module, for example, connecting resistance thermometers or resistors to the front connector of the analog module or loads to the voltage output of an analog output module.
Glossary Basic error limit The basic error limit represents the operational limit at 25° C relative to the nominal range of the analog module. Baud rate Speed of the data transmission (bps) Central rack An S7-400 consists of a central rack (CR) to which expansion racks (ER) can be assigned. The central rack is the rack containing the → CPU.
Glossary CP → Communications processor Data block Data blocks (DBs) are data areas in the user program that contain user data. There are shared data blocks that can be accessed by all logic blocks and there are instance data blocks assigned to a specific FB call. Declaration Definition of variables (for example parameters or local data of a block) with name, data type, comment etc. Default (setting) The default is a practical basic setting that is always used when no other value is specified.
Glossary Direct data exchange Direct data exchange is sometimes also known as direct communication. In direct data exchange, local input address areas of an intelligent DP slave (for example, CPU 315-2 with PROFIBUS DP attachment) or a DP master are assigned to a PROFIBUS DP partner. The intelligent DP slave or the DP master receives the input data that the PROFIBUS DP partner sends to its DP master via these assigned input address areas. DP master A node with master functionality in PROFIBUS DP.
Glossary A fiber-optic cable is a transmission medium made of glass or plastic fiber. Fiber-optic cables are insensitive to electromagnetic interference and allow high data transmission rates. Fiber-optic cable The "force" function overwrites a variable (for example, memory bit, output) with a value defined by the user. At the same time, the variable is write-protected so that the value cannot be modified from any other location (it cannot, for example, be overwritten by the user program).
Glossary Fuse blown Parameter in STEP 7 for digital output modules. When the parameter is enabled, the blowing of one or more fuses is detected by the module. With suitable parameter assignment, a → diagnostic interrupt is triggered. Grounding Grounding means connecting an electrically conductive part to the ground electrode (one or more conductive parts that make good contact with ground) via a grounding system.
Glossary The permitted input delay depends on the length of the cable between sensor and module. If, for example, there are long unshielded cables to the sensor (over 100 m), a high input delay must be set. Integration time The integration time is the reciprocal of the → interference frequency suppression in ms. Interrupt SIMATIC S7 recognizes 28 different priority classes that control the execution of the user program. These priority classes include interrupts, such as hardware interrupts.
Glossary these modules, you should make sure that the measurement signal is "clean", for example by adhering to the installation instructions. Measuring principle, integrating A module with an integrating measurement technique is always used for measurements that are not time-critical. The integration time is inversely proportional to the network frequency. You set the network frequency in STEP 7 and this results in the integration time.
Glossary Operating state The automation systems of SIMATIC S7 recognize the following operating modes or simply modes: STOP, → STARTUP, RUN and HOLD. Operational limit The operational limit is the measurement or output error of the analog module throughout the entire temperature range related to the nominal range of the analog module. Parameters 1. Variables of a → logic block 2. Variable for setting the properties of a module (one or more per module).
Glossary PROFIBUS DP Digital, analog and intelligent modules, along with a wide range of field devices complying with IEC 61784-1:2002 Ed1 CP 3/1, such as drives or valve clusters are moved away from the automation system to the local process over distances of up to 23 km. The modules and field devices are interconnected with the automation system over the PROFIBUS DP Fieldbus and are addressed in the same way as centralized I/O.
Glossary Reference temperature Parameter in STEP 7 for analog input modules. The reference temperature is the temperature of the reference junction of thermoelements. The reference temperature allows correct temperature measurement with thermoelements. The temperature of the reference junction must be known because a thermoelement always detects the temperature difference between the measuring point and the reference junction.
Glossary Shunt Conductor connected in parallel in electric circuits. Signal module Signal modules (SMs) form the interface between the process and the automation system. There are input modules, output modules, input/output modules (in each case, digital and analog) Smoothing Parameter in STEP 7 for analog input modules. The measured values are smoothed by digital filtering. It is possible to select between no, weak, medium and strong filtering for each individual module.
Glossary Temperature coefficient Parameter in STEP 7 for analog input modules during when measuring temperature with thermoresistors (RTD). The temperature coefficient is selected to suit the thermoresistor used (according to DIN standard). Temperature error The temperature error is the drift of the measured/output values caused by changes in the ambient temperature of the analog module. It is specified as a percentage per degree Kelvin and relates to the nominal range of the analog module.
Glossary Work memory The work memory is a → RAM area on the → CPU that is accessed by the processor during execution of the user program.
Index 2 24 VDC fan subassembly Features, 400 Installation, 401 Specifications, 401 wiring, 400 2-conductor connection, 230 2-wire transducer, 224 3 3-conductor connection, 229 4 4-conductor connection, 228 4-wire transducer, 226 A Abbreviations, 451 AC Meaning, 451 Accessories Order numbers, 443 S7400, 443 ADC Meaning, 451 ADC-DAC error Analog input module, 244 Additional support, 4 Address area Setting, 369 Addressing S5 modules, 363 AI Meaning, 451 SM 431 Block diagram, 294 Features, 293 Specifications
Index RAM error, 244 Reference channel error, 245 Reference junction, 218 Reference temperature, 218 Run time calibration error, 245 Short-circuit to M, 244 SM 431, AI 16 x 13 Bit, 284 SM 431, AI 8 x 13 Bit, 248 SM 431, AI 8 x 14 Bit, 257, 274 SM 431, AI 8 x 16 Bit, 321 SM 431, AI 8 x RTD x 16 bit, 311 Smoothing of analog input values, 212, 218 STOP mode, 244 Structure of data record 1, 419 Temperature coefficient, 218 temperature unit, 218 Underflow, 245 Wire break, 244 Wire break monitoring, 217 Analog m
Index SM 431, 294 Block diagram SM 431, AI 8 x 16 Bit, 335 Block diagram of the SM 431, AI 8 x 13 Bit, 248 Bus connector, 383 BUS1F Meaning, 451 Bytes 0 and 1 of diagnostic data, 422 C Cable Plug in, 366 Prepare, 366 Cable 721 Pin assignments, 372 Cable duct and fan subassemblies Features, 393 Cable length IM 463-2, 363 Segment, 404 Selecting, 366 Cable length selector switch, 365 Cable Lengths For PROFIBUS DP, 384 Cables, 347 for analog signals, 220, 237 Calculating Backup time, 54 Calibration software,
Index Compensating box, 234 Connecting loads to current outputs, 241 Electrically isolated sensors, 221 IM 463-2, 366 IM 467 FO with fiber-optic cable, 385 Non-isolated sensors, 222 Resistance thermometers and resistors, 228 rules, 345 Rules, 345 Thermocouples to resistance thermometers, 236 Voltage sensors, 223 Connection scheme RS 485 repeater, 407 Connector Mounting, 386 Connector pin assignment, 384 Contact, direct, 449 Controlling Operating state, 380 Conversion time Analog input channels, 212 Analog
Index Channel information available, 100 EPROM error, 100 External auxiliary voltage missing, 100 External error, 100 Front connector missing, 100 Fuse blown, 100 Hardware interrupt lost, 100 Incorrect parameters, 100 Internal error, 100 Internal voltage failure, 100 Load voltage L+ missing, 100 Module error, 100 No module parameters, 100 Parameter assignment error, 100 Sensor supply missing, 100 Short-circuit to L+, 100 Short-circuit to M, 100 Wire break, 100 Diagnostic messages, 99, 242 Analog input modu
Index Digital output modules Features, 94 Discharge of static electricity Protective measures, 449 Discharge, electrostatic Persons, 448 Displaying parameter assignment errors SM 431, AI 8 x RTD x 16 bit, 319 DO Meaning, 451 Documentation package, 4 Dynamic parameters, 96 Diagnostic data, 421 EXM Meaning, 451 Explosion protection guidelines, 23 External error Analog input module, 244 Digital module, 101 EXTF Meaning, 451 EXTF LED Analog module, 242 Digital module, 99 E F Edge, 97 EEPROM Meaning, 451 El
Index SM 431, AI 8 x RTD x 16 bit, 311 SM 432, AO 8 x 13 Bit, 335 FEPROM Meaning, 451 Firmware, 381 FM Approval, 27 Meaning, 451 FOC Meaning, 452 Reusing, 387 FRCE Meaning, 451 Front connector missing Analog input module, 244 Digital module, 101 Function Backup battery, 53 Channel cable, 396 IM 460-0 and IM 461-0, 348 IM 460-1 and IM 461-1, 351 IM 460-3 and IM 461-3, 355 IM 460-4 and IM 461-4, 358 Interface modules, 343 Operator controls, 57 Functions Power supply modules, 49 Rack, 37 Fuse, 401 Changing, 1
Index Operator controls, 364 Order number, 361 Rules for connecting, 363 Specifications, 375 Terminator, 374 IM 467, 377 Communication services, 379 Configuration, 382 Connection to PROFIBUS DP, 383 Specifications, 389, 390 IM 467 FO, 377 Communication services, 379 Configuration, 382 Connection to PROFIBUS DP, 383 Fiber-optic cable, connecting, 385 IM 467/ IM 467 FO Application, 377 Design, 377 IM operating mode, 380 Incorrect parameters Analog input module, 244 Digital module, 101 Indicators, 55 IM 463-2
Index BAF, BATTF, 62 IM 463-2, 365 INTF, 5 VDC, 24 VDC, 60 LEDs INTF, 5 VDC, 24 VDC, 56 Limit Analog input module, 217 Load voltage failure of the analog module, 209 Load voltage L+ missing Digital input module, 97 Digital module, 102 Digital output module, 98 Low voltage directive, 22 M M MM+ Meaning, 452 Meaning, 452 Meaning, 452 MANA Meaning, 452 Manual purpose, 3 Manual package, 4 Marine approvals, 27 Marking Australia, 23 New Zeeland, 23 Meaning Abbreviations, 451, 452 AC:, 451 ADC:, 451 AI:, 451 A
Index TD, 452 UC, 452 UCM, 453 UH, 453 Uiso, 453 USR, 453 Vs, 453 Measured value resolution, 185 Measurement Analog input module, 217 Measuring method Analog input channels, 205 Analog input module, 217 Measuring methods SM 431, AI 16 x 13 Bit, 291 SM 431, AI 16 x 16 Bit, 306 SM 431, AI 8 x 13 Bit, 255 SM 431, AI 8 x 14 Bit, 269, 281 SM 431, AI 8 x 16 Bit, 333 SM 431, AI 8 x RTD x 16 bit, 320 Measuring range Analog input channels, 205 Analog input module, 218 Measuring range module, 205 Replugging, 206 Set
Index The 120/230 VAC fan subassembly, 397 Optimum Signal propagation delays, 116 Order number 6ES7 400-1JA01-0AA0, 39 6ES7 400-1JA11-0AA0, 39 6ES7 400-1TA01-0AA0, 39 6ES7 400-2JA00-0AA0, 41 6ES7 400-2JA10-0AA0, 41 6ES7 401-1DA01-0AA0, 45 6ES7 401-2TA01-0AA0, 43 6ES7 403-1JA01-0AA0, 46 6ES7 403-1JA11-0AA0, 46 6ES7 403-1TA01-0AA0, 46 6ES7 405-0KA01-0AA0, 85 6ES7 405-0KA02-0AA0, 87 6ES7 405-0KR02-0AA0, 87 6ES7 405-0RA01-0AA0, 89 6ES7 405-0RA02-0AA0, 91 6ES7 407-0DA01-0AA0, 65 6ES7 407-0DA02-0AA0, 68 6ES7 407
Index LED, 305 SM 431, AI 16 x 16 Bit, 305 SM 431, AI 8 x 16 Bit, 332 Parameters Analog input module, 217, 418 Analog output module, 219 Data record, 411 Digital input module, 97, 413 Digital output module, 98, 416 Dynamic, 96, 216 Editing in the user program, 96, 216 SM 421, DI 16 x DC 24 V, 115 SM 421, DI 16 x UC 24/60 V, 128 SM 421, DO 16 x DC 20-125 V/1.5 A, 150 SM 422, DO 16 x AC 20-120 V/2 A, 173 SM 422, DO 32 x DC 24 V/0.
Index QV Meaning, 452 R Rack CR2, 43 CR3, 45 Design, 37 ER1, 46 ER2, 46 Functions, 37 UR1, 39 UR2, 39 UR2-H, 41 Rack number Changing, 349 Radio interference Emission of, 30 RAM Meaning, 452 RAM error Analog input module, 244 Rating plate, 21 RC network, 407 Reading Diagnostic messages, 99, 242 Reading analog values STEP 7 blocks, 179 Receive IM Operator controls and indicators, 349, 356, 359 Operator controls and indicators, 353 REDF Meaning, 452 Reducing Vibrations, 34 Redundant operation, 51 Redundant p
Index RL Meaning, 452 RS 485 repeater, 403 Application, 404 Connection scheme, 407 Design, 405 grounded, 406 grounded operation, 406 Installation rules, 404 Pin assignment, 409 Specifications, 409 Ungrounded, 406 ungrounded operation, 406 Rules Connection, 345 Run time calibration error Analog input module, 245 S S- Meaning, 452 S+ Meaning, 452 S5 expansion unit Setting, 368 S5 interface modules, 362 S5 modules Addressing, 363 Configuration, 370 S7 functions, 379 S7400 Accessories, 443 Spare parts, 443
Index Features, 130, 134 Specifications, 132, 136 Wiring and block diagrams, 131, 135 SM 421, DI 16 x UC 24/60 V Diagnostic data, 425 Features, 124 Parameters, 128 Specifications, 126 Wiring and block diagrams, 125 SM 421, DI 32 x DC 24 V Specifications, 108 Wiring and block diagrams, 107 SM 421, DI 32 x UC 120 V Features, 138 Specifications, 140 Wiring and block diagrams, 139 SM 421, DO 16 x DC 20-125 V/1.
Index Specifications, 314 Wiring diagram, 313 SM 432, AO 8 x 13 Bit Configuration of analog output circuits, 340 Features, 335 Output ranges, 340 Parameters, 340 Smoothing of analog input values, 212 Analog input module, 218 Spare parts Order numbers, 443 S7400, 443 Specifications 24 VDC fan subassembly, 401 SM 431, 296 Backup battery, 54 Channel cable, 396 CR2, 44 CR3, 45 ER1 and ER2, 47 IM 460-0 and 461-0, 350 IM 460-1 and 461-1, 354 IM 460-3 and 461-3, 357 IM 460-4 and 461-4, 360 IM 463-2, 375 IM 467, 3
Index Terminator, 345 IM 463-2, 374 Test voltages, 36 Testing Mechanical ambient conditions, 35 Reference channel error, 310 Underflow, 310 The 120/230 V DC fan subassembly Installation, 398 The 120/230 VAC fan subassembly Fuse, 397 Operator controls and indicators, 397 Specifications, 398 Thermal voltage, 231 Thermocouple Connecting to an analog input module, 231 Design, 231 Operating principle, 231 Thermocouples to resistance thermometers Connecting, 236 Training center, 4 U UC Meaning, 452 UCM Meaning,
Index SFC 55, 411 486 S7-400 Automation System Module Data Reference Manual, Edition 09/2009, A5E00850736-06