RDY2000BN BACnet Thermostat Conventional Application 14900 Application Note 140-1231 2020-02-11 Smart Infrastructure
Siemens Industry, Inc.
Copyright Notice Copyright Notice Notice Document information is subject to change without notice by Siemens Industry, Inc. Companies, names, and various data used in examples are fictitious unless otherwise noted. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Siemens Industry, Inc.
Table of Contents Overview ................................................................................................................................... 6 BACnet ................................................................................................................................. 6 Hardware Inputs ................................................................................................................... 7 Hardware Outputs.............................................................
Overview BACnet Overview In Application 14900, the controller controls multiple compressors for cooling, and a multiple-stage heater for heating. This unit may be equipped with electric heat or a fossil fuel furnace. Typically, this US Room Temperature Unit (RTU) application fits most five-wire thermostats on the market. Secondary features include: Demand Ventilation Control, Occupancy indication, Economizer Enabling, and Humidification/Dehumidification Enabling a call for external equipment to energize.
Overview Hardware Inputs Product Supported BIBBs BIBB Name DM-TS-B Device Management – Time Synchronization - B DM-RD-B Device Management - Reinitialize Device-B DM-R-B Device Management – Restart - B Hardware Inputs ● Configurable input IN1 ● Configurable input IN2 ● Configurable input IN3 ● Configurable input IN4 ● Onboard space temperature ● Onboard space humidity Configurable inputs can be configured to the following types: 1 = Indoor Temperature (Remote) 2 = Indoor Temperature (Average) 3 = S
Overview I/O Mix (Relay Assignment Matrix) Configurable outputs can be configured to the following types: 1 = Humidification 2 = Dehumidification 3 = Occupied 4 = Air Quality 5 = Economizer Enable 6 = Not Used I/O Mix (Relay Assignment Matrix) In a conventional RTU application, the maximum number of compressors is three, with up to three stages of heat. The number of stages can be configured using the BACnet points HeatStg and CoolStg.
Overview Connection Diagram Heating Stages Cooling Stages Y1 Y2 W1 W2 O/B OUT1 (AuxOut1) 3 3 Stage 1 Cooling Stage 2 Cooling Stage 1 Heating Stage 2 Heating Stage 3 Heating Stage 3 Cooling Connection Diagram Table 2: Standard Conventional Connection Diagram C HVAC Control Circuit Common RC 24 Vac from Transformer on Cooling System RH 24 Vac from Transformer on Heating System G Fan Y1 First Stage Cooling Y2 Second Stage Cooling O/B Third Stage Heating (only when Third Stage Heat
Sequence of Operation Control Temperature Setpoints Sequence of Operation The following paragraphs show the sequence of operation for Application 14900. Control Temperature Setpoints This application has a number of different room temperature setpoints (ComfortHtgSP, EconHtgSP, ComfortClgSP, and EconClgSP). The setpoint can be temporarily overridden for a period of time (default is 30 minutes). The application controls using the effective setpoint (EFF STPT).
Sequence of Operation Effective Room Temperature NOTE: Effective Setpoint does not exist as a BACnet object. The controller determines what the Effective setpoint is by evaluating the value of ModeEff. If ModeEff is Heating, EffectiveSetpoint is the value of HeatingSp. If ModeEff is Cooling, EffectiveSetpoint is the value of CoolingSp. The actual value used by HeatingSp or CoolingSp at any given time is determined by a number of factors.
Sequence of Operation Staging Control ChgOvrDB: Change Over Deadband restricts how close CoolingSp and HeatingSp can be set. A minimum deadband (default is 5°F) must to be maintained. To separate the CoolingSp and HeatingSp, one setpoint change may change the other setpoint to maintain a gap between them. Staging Control The RTU is controlled by a hysteresis loop (Step Control). Hysteresis prevents the compressor/heater from frequently switching on and off.
Sequence of Operation Electric Heat (Optional) ● An Inter-stage Delay timer must be enforced between the second cooling stage OFF and the first cooling stage OFF to ensure that the first compressor will not be turned off until the second compressor has been turned off for the time set in the Inter-stage Delay.
Sequence of Operation Gas Furnace (Optional) ● An Inter-stage Delay (StgDlyHt) timer must be enforced between the third heating stage OFF and the second heating stage OFF to ensure that the second heating stage won’t be turned off until the third heating stage has been turned off for the time set in Inter-stage Delay timer.
Sequence of Operation Operation Diagram – RTU with Three Cooling Stages and Three Heating Stages. If HTG STG NUMBER = 3, the application controls HTG STG 3 (O/B) as follows: ● If IndoorTempEff is less than the switching on point of the third heating stage (HeatingSp – 1/2 HeatingDB – StgDifHt*2), the third heating stage has been OFF for at least the time set in MIN OFF, and the Inter-stage Delay (StgDlyHt) timer has expired, HTG STG 3 (O/B) is turned ON.
Sequence of Operation Wiring Diagram ON Mode – The fan relay is energized regardless of whether or not there is a call for heating or cooling, unless the unit is set to Unit Off. Fan Opr - The fan relay can be set to be energized or not energized upon call for heat using Paramater P105 (HTG FAN). If P105 is set to ELE, the fan relay responds to the call for heat to energize.
Sequence of Operation Auxiliary Sequences Figure 3: Wiring Schematic, Conventional. Auxiliary Sequences The RDY2000BN primary sequences are designed to control single and multi-stage heating/cooling systems to maintain a user-defined temperature setpoint.
Sequence of Operation Auxiliary Sequences ● ● If humidity rises above (setpoint – 4%) before the proof timer times out, the humidification relay does not engage and the proof timer is reset. If the humidity rises to setpoint, a 30-second proof timer engages. If the humidity is still above the setpoint after the proof timer times out, the humidification relay de-energizes.
Sequence of Operation Occupancy Notification Figure 4: Humidification and Dehumidification Operation. HmdySp: Humidification Setpoint, user-adjustable to desired level in Humidification mode. DeHmdySp: Dehumidification Setpoint, user-adjustable to desired level in Dehumidification mode. HUSP DB: A deadband maintained between the HmdySp and the DeHmdySp. If one changes, the other dynamically shifts to maintain at least a 15% gap. HU DB: Humidification/Dehumidification Deadband.
Sequence of Operation Occupancy Notification ● ● An optional occupancy sensor can be used in conjunction with the schedule. The thermostat will follow the assumptions above, but an input from the occupancy sensor during a scheduled unoccupied period will put the thermostat into Occupied mode for the duration of the timer set in Parameter P404 (OCC MRT) Occupancy Min run Timer (OccMinRun).
Sequence of Operation Air Quality Management Air Quality Management If measured CO2 exceeds the setpoint (1000 ppm) by 200 ppm, after a proof timer of 60 seconds, or a CO2 concentration still exceeds the setpoint (1000 ppm) by 200 ppm, the Air Quality output relay energizes and the Fresh Air icon activates. The fan relay (G) energizes and the icon displays.
Service and Fault Messages Sensor Failure Handling Service and Fault Messages All of the three counters for the Service UV Lamp, Service Humidifier and Service Air Filter are tied to the fan running and are based on calendar days. ● Service UV Lamp (SrvcUvLamp): The UV Lamp counter keeps track of the run time of the fan calendar days since the UV Lamp service reminder was last acknowledged/cleared.
Service and Fault Messages Overcurrent Protection Overcurrent Protection If the sum of the current flowing through all of the relays exceeds 3A, all of the relays will revert to their OFF state and the OverCurrent binary value object will turn ON. The RDY2000BN will remain in that state for four minutes. After that time, all of the relays that were placed in the OFF state will change to their ON state.
BACnet Scheduler BACnet Scheduler The thermostat’s Scheduler functionality can be manually configured using the P107 SCHEDULER in the Wizard/Installer menu. This parameter simplifies the task of entering the local schedule using the touchscreen interface for cases where a day’s schedule may be identical to another day’s schedule. The local schedule can be disabled by setting P107 = OFF. ● By setting P107 = 1, all days will contain the same schedule.
Application 14900 Point Database Application 14900 Point Database Table 3: Point Database. Object Type1 Device Object Instance (Point Number) 4194303 Object Name (Descriptor) RDY Factory Default (SI Units)2 Eng Units (SI Units) State Text Enumerations/Notes 4194303 AnalogInput 0 UI1.NTC10K 0.0 DegF/DegC For troubleshooting purposes only. AnalogInput 1 UI1.10V 0.0 DegF/DegC For troubleshooting purposes only. AnalogInput 2 UI2.NTC10K 0.0 DegF/DegC For troubleshooting purposes only.
Application 14900 Point Database Object Type1 Object Instance (Point Number) Object Name (Descriptor) Factory Default (SI Units)2 Eng Units (SI Units) State Text Enumerations/Notes BinaryOutput3 7 AuxOutput2 0 RelayOff/Relay On OUT2 BinaryOutput3 8 AuxOutput3 0 RelayOff/Relay On OUT3 AnalogValue 0 HmdySp 25.0 %RH If AuxOut1-3 = 1, this is a runtime humidity setpoint. AnalogValue 1 DeHmdySp 50.0 %RH If AuxOut1-3 = 2, this is a runtime dehumidification setpoint.
Application 14900 Point Database Object Type1 Object Instance (Point Number) Object Name (Descriptor) Factory Default (SI Units)2 Eng Units (SI Units) State Text Enumerations/Notes AnalogValue 24 TmpIn3Low 0.0 DegF/DegC AnalogValue 25 TmpIn3High 120.0 DegF/DegC AnalogValue 26 TmpIn4Low 0.0 DegF/DegC AnalogValue 27 TmpIn4High 120.0 DegF/DegC AnalogValue 28 InstallPW 0000.0 AnalogValue 29 ExpertPW 9999.0 AnalogValue 30 HeatingSp 70.
Application 14900 Point Database Object Type1 Object Instance (Point Number) Object Name (Descriptor) Factory Default (SI Units)2 Eng Units (SI Units) State Text Enumerations/Notes AnalogValue 49 OutDoorTmp 0.0 DegF/DegC If Input1-4 = 5, this is runtime value. AnalogValue 50 IndoorTmpAvg 0.0 DegF/DegC If Input1-4 = 2, this is an intermediate value. AnalogValue 51 Humidity 0.0 %RH If Input1-4 = 6, this is a runtime value. AnalogValue 52 IndoorTmpEff 0.
Application 14900 Point Database Object Type1 Object Instance (Point Number) Object Name (Descriptor) Factory Default (SI Units)2 Eng Units (SI Units) State Text Enumerations/Notes BinaryValue 22 SrvcFilter 0 No Serv/Service BinaryValue 23 HpCompLockOn 0 No Lock/Lock Present, but no impact on the control sequence. BinaryValue 24 HpAuxLockOn 0 No Lock/Locke Present, but no impact on the control sequence.
Application 14900 Point Database Object Type1 Object Instance (Point Number) Object Name (Descriptor) Factory Default (SI Units)2 Eng Units (SI Units) State Text Enumerations/Notes MultistateValue 10 Input4 10 InTemRem, InTemAvg, Sup Temp, Ret Temp, Out Temp, Hum 0-10, CO2 0-10, Occ DI, Fault, Not Used MultistateValue 11 TmpIn1Type 1 Type2Th, 0-10V MultistateValue 12 TmpIn2Type 1 Type2Th, 0-10V MultistateValue 13 TmpIn3Type 1 Type2Th, 0-10V MultistateValue 14 TmpIn4Type 1 Typ
Application 14900 Point Database Object Type1 Object Instance (Point Number) Object Name (Descriptor) MultistateValue 26 RM OP MODE Schedule 0 WeeklySchedule_1 Factory Default (SI Units)2 Eng Units (SI Units) State Text Comfort, Economy, Protect 1 Enumerations/Notes Effective runtime room operating mode 1) Object Types are: Analog Input (AI), Analog Value (AV), Binary Input (BI), Binary Value (BV), Multistate Value (MV), and Binary Output (BO).
Application 14900 Point Database Object Type Object Instance (Point Number) Object Name (Descriptor) Read (R)/ Write (W) Present Value Write Values Read (R)/ Write (W) Out of Service BinaryOutput2,3 1 FanCmd W (0) RelayOff; (1) Relay On W BinaryOutput2,3 2 Y1 W (0) RelayOff; (1) Relay On W BinaryOutput2,3 3 Y2 W (0) RelayOff; (1) Relay On W BinaryOutput2,3 4 W1 W (0) RelayOff; (1) Relay On W BinaryOutput2,3 5 W2 W (0) RelayOff; (1) Relay On W BinaryOutput2,3 6 AuxOutpu
Application 14900 Point Database Object Type Object Instance (Point Number) Object Name (Descriptor) Read (R)/ Write (W) Present Value Write Values Read (R)/ Write (W) Out of Service AnalogValue 21 TmpIn1High W -58 – 250℉; -50 – 120℃ R AnalogValue 22 TmpIn2Low W -58 – 250℉; -50 – 120℃ R AnalogValue 23 TmpIn2High W -58 – 250℉; -50 – 120℃ R AnalogValue 24 TmpIn3Low W -58 – 25℉; -50 – 120℃ R AnalogValue 25 TmpIn3High W -58 – 25 ℉; -50 – 120℃ R AnalogValue 26 TmpIn4Low W
Application 14900 Point Database Object Type Object Instance (Point Number) Object Name (Descriptor) Read (R)/ Write (W) Present Value Write Values Read (R)/ Write (W) Out of Service AnalogValue 50 IndoorTmpAvg R N/A W AnalogValue 51 Humidity R N/A W AnalogValue 52 IndoorTmpEff R N/A W AnalogValue 53 FanRunTime R N/A W BinaryValue3 0 FanMode W (0) Auto; (1) Manual W BinaryValue 1 RevValveMode W (0) Cooling; (1) Heating R BinaryValue 2 SemiContFan W (0) No; (1)
Application 14900 Point Database Object Type Object Instance (Point Number) Object Name (Descriptor) Read (R)/ Write (W) Present Value Write Values Read (R)/ Write (W) Out of Service BinaryValue 25 OverCurrent R N/A W BinaryValue 26 SchOcupy R N/A W BinaryValue 27 HmiOcupy R N/A W BinaryValue 28 VntlationEff R N/A W BinaryValue 29 PrePurgeEn R N/A W MultistateValue 0 Periods R N/A R MultistateValue 1 TmpOvrRide W (1) 1F/0.5C; (2) 2F/1C; (3) 3F/1.
Application 14900 Point Database Object Type Object Instance (Point Number) Object Name (Descriptor) Read (R)/ Write (W) Present Value Write Values Read (R)/ Write (W) Out of Service MultistateValue 11 TmpIn1Type W (1) Type2Th; (2) 0-10V R MultistateValue 12 TmpIn2Type W (1) Type2Th; (2) 0-10V R MultistateValue 13 TmpIn3Type W (1) Type2Th; (2) 0-10V R MultistateValue 14 TmpIn4Type W (1) Type2Th; (2) 0-10V R MultistateValue 15 StgDifCl W (1) 1F/0.5C; (2) 2F/1C; (3) 3F/1.
Application 14900 Point Database Table 5: Object Parameter Mapping. Object Type Device Object Instance (Point Number) 4194303 Object Name (Descriptor) Installer Menu Parameter Number Installer Menu Parameter Name RDY AnalogInput 0 UI1.NTC10K AnalogInput 1 UI1.10V AnalogInput 2 UI2.NTC10K AnalogInput 3 UI2.10V AnalogInput 4 UI3.NTC10K AnalogInput 5 UI3.10V AnalogInput 6 UI4.NTC10K AnalogInput 7 UI4.
Application 14900 Point Database Object Type Object Instance (Point Number) Object Name (Descriptor) Installer Menu Parameter Number Installer Menu Parameter Name AnalogValue 4 TmpOffset P203 TMP OFFSET AnalogValue 5 ChgOvrDly P505 C-O DLY AnalogValue 6 MinOnTimeHt P510 M R T HT AnalogValue 7 MinOffTimeHt P509 M O T HT AnalogValue 8 MinOffTimeCl P503 M O T CL AnalogValue 9 MinOnTimeCl P504 M R T CL AnalogValue 10 OccMinRun P404 OCC MRT AnalogValue 11 StgDlyHt P507
Application 14900 Point Database Object Type Object Instance (Point Number) Object Name (Descriptor) Installer Menu Parameter Number Installer Menu Parameter Name AnalogValue 34 EconClgSP P223 ECO CL SP AnalogValue 35 EconHtgSP P222 ECO HT SP AnalogValue 36 CoolStg P102 COOL STGS AnalogValue 37 PreOcpyPrg P403 PRE OC PRG AnalogValue 38 MS/TP MAC P601 MS/TP MAC AnalogValue 39 ProtClgSP P225 PROT HT SP AnalogValue 40 ProtHtgSP P224 PROT CL SP AnalogValue 41 UnitNumbe
Application 14900 Point Database Object Type Object Instance (Point Number) Object Name (Descriptor) Installer Menu Parameter Number Installer Menu Parameter Name BinaryValue 10 Units P109 UNITS BinaryValue 11 DST P112 DAYLT SAVE BinaryValue 12 SpDispMode P113 TMP SP DIS BinaryValue 13 OcupyInput BinaryValue 14 HmdyOn BinaryValue 15 DeHmdyOn BinaryValue 16 OcupyStatus BinaryValue 17 DCV BinaryValue 18 ExtFault BinaryValue 19 EcomzrOn BinaryValue 20 SrvcUvLamp Bin
Application 14900 Point Database Object Type Object Instance (Point Number) Object Name (Descriptor) Installer Menu Parameter Number Installer Menu Parameter Name MultistateValue 10 Input4 P313 INPUT 4 MultistateValue 11 TmpIn1Type P302 TMP IN 1 MultistateValue 12 TmpIn2Type P306 TMP IN 2 MultistateValue 13 TmpIn3Type P310 TMP IN 3 MultistateValue 14 TmpIn4Type P314 TMP IN 4 MultistateValue 15 StgDifCl P502 STG DIF CL MultistateValue 16 CoolingDB P506 CL DEADBND Mult
Scheduling Examples Scheduling Examples Table 6: Daily Schedule Example 6 Periods per Day, Parameter 107 = 1. Monday – Sunday (Each day is the same) Day Event 1 2 3 4 5 6 Mode COM ECO COM ECO COM ECO Time 6:00 AM 11:00 AM 1:00 PM 2:00 PM 3:00 PM 10:00 PM Table 7: Work Week Schedule with Weekend Example 6 Periods per Day, Parameter 107 = 2.
Scheduling Examples Table 9: Individual Days (Monday – Sunday) Example 6 Periods per Day, Parameter 107 = 7. Monday – Sunday (Each day can be unique) Day Event 1 2 3 4 5 6 Mode Comfort Economy Comfort Economy Comfort Economy Time 6:00 AM 11:00 AM 1:00 PM 2:00 PM 3:00 PM 10:00 PM NOTE: The Scheduler default setting consists of two events: Event 1 = ON (Comfort) at 7:00 AM, Event 2 = ECO (Economy) at 7:00 PM. 43 Siemens Industry, Inc.
Issued by Siemens Industry, Inc. Smart Infrastructure 1000 Deerfield Pkwy Buffalo Grove IL 60089 Tel. +1 847-215-1000 Document ID 140-1231 Edition 2020-02-11 © Siemens Industry, Inc., 2020 Technical specifications and availability subject to change without notice.