User Manual
Table Of Contents
- 1 Cyber security disclaimer
- 2 Preconditions of this document
- 3 System overview
- 4 Desigo workflow, tools and programming
- 4.1 Coverage of the technical process
- 4.2 Coverage of the system
- 4.3 Main tasks
- 4.4 Tools for different roles
- 4.5 Working with libraries
- 4.6 Working in parallel and subcontracting
- 4.7 Workflow for primary systems
- 4.8 Workflow for room automation classic
- 4.9 Workflow for Desigo room automation
- 4.10 Desigo Configuration Module (DCM)
- 4.11 Desigo Xworks Plus (XWP)
- 4.12 Desigo Automation Building Tool (ABT)
- 4.13 Programming in D-MAP
- 5 Control concept
- 6 Technical view
- 7 Global objects and functions
- 8 Events and COV reporting
- 9 Alarm management
- 9.1 Alarm sources
- 9.2 Alarm example
- 9.3 Effects of BACnet properties on alarm response
- 9.4 Alarm response of the function blocks
- 9.5 Alarm functions
- 9.6 Alarm management by notification class
- 9.7 Alarm routing over the network
- 9.8 Alarm queuing
- 9.9 Common alarms
- 9.10 Alarm suppression
- 9.11 Alarm message texts
- 10 Calendars and schedulers
- 11 Trending
- 12 Reports
- 13 Data storage
- 14 Network architecture
- 15 Remote access
- 16 Management platform
- 17 Desigo Control Point
- 18 Automation stations
- 19 Logical I/O blocks
- 20 Room automation
- 21 Desigo Open
- 22 System configuration
- 22.1 Technical limits and limit values
- 22.2 Maximum number of elements in a network area
- 22.3 Desigo room automation system function group limits
- 22.4 Devices
- 22.4.1 PXC..D automation stations / system controllers
- 22.4.2 LonWorks system controllers
- 22.4.3 Automation stations with LonWorks integration
- 22.4.4 PX Open integration (PXC001.D/-E.D)
- 22.4.5 PX Open integration (PXC001.D/-E.D + PXA40-RS1)
- 22.4.6 PX Open integration (PXC001.D/-E.D + PXA40-RS2)
- 22.4.7 PX KNX integration (PXC001.D/-E.D)
- 22.4.8 TX Open integration (TXI1/2/2-S.OPEN)
- 22.4.9 Number of data points on Desigo room automation stations
- 22.4.10 Number of data points for PXC3
- 22.4.11 Number of data points for DXR1
- 22.4.12 Number of data points for DXR2
- 22.4.13 PXM20 operator unit
- 22.4.14 PXM10 operator unit
- 22.4.15 Desigo Control Point
- 22.4.16 PXG3.L and PXG3.M BACnet routers
- 22.4.17 SX OPC
- 22.4.18 Desigo CC
- 22.4.19 Desigo Insight
- 22.4.20 Desigo Xworks Plus (XWP)
- 22.4.21 Desigo Automation Building Tool (ABT)
- 22.5 Applications
- 23 Compatibility
- 23.1 Desigo version compatibility definition
- 23.2 Desigo system compatibility basics
- 23.2.1 Compatibility with BACnet standard
- 23.2.2 Compatibility with operating systems
- 23.2.3 Compatibility with SQL servers
- 23.2.4 Compatibility with Microsoft Office
- 23.2.5 Compatibility with web browsers
- 23.2.6 Compatibility with ABT Go
- 23.2.7 Compatibility with VMware (virtual infrastructure)
- 23.2.8 Compatibility of software/libraries on the same PC
- 23.2.9 Hardware and firmware compatibility
- 23.2.10 Backward compatibility
- 23.2.11 Engineering compatibility
- 23.2.12 Compatibility with Desigo Configuration Module (DCM)
- 23.2.13 Compatibility with Desigo PX / Desigo room automation
- 23.2.14 Compatibility with Desigo RX tool
- 23.2.15 Compatibility with TX-I/O
- 23.2.16 Compatibility with TX Open
- 23.3 Desigo Control Point
- 23.4 Upgrading from Desigo V6.2 Update (or Update 2) to V6.2 Update 3
- 23.5 Siemens WEoF clients
- 23.6 Migration compatibility
- 23.7 Hardware requirements of Desigo software products
- 24 Desigo PXC4 and PXC5
- 25 Compatibility of Desigo V6.2 Update 3 with PXC4 and PXC5
Remote access
Choosing a suitable access technology
15
CM110664en_07 205 | 351
● The DSL line in parallel can be used for telephone calls.
● If you want to use telephony on the same line, you need a splitter in addition to the DSL modem.
TV cable-based access
● This access is similar to DSL. You can access the system remotely via a cable modem provided by the
cable network operator.
Other cable-based networks, such as metro ethernet
Characteristics of other cable-based networks, such as metro ethernet:
● Connections with very high bandwidth are available.
● A metro ethernet connection is usually not implemented as part of a BACS project.
Use of mobile telephone networks
The available bandwidth is shared by an unknown number of users with an unknown usage profile. The
maximum data transfer rates that are advertised by the mobile network operators deviate substantially
from the actual data transfer rates.
The access via a mobile network is less stable than via a cable-based network in terms of availability and
data throughput.
If you have to establish a remote access in a remote area, check the service availability and stability. You
can use the distance from the base station of the network operator as a criterion. You can also check if
there are any large obstacles (mountains, etc.) between the base station and the building.
LTE & UMTS
Characteristics of LTE & UMTS:
● Can be fast
GPRS
Characteristics of GPRS:
● The speed suffices merely for tasks requiring a low bandwidth, e.g., for the system to send an email
with a small attachment.
Other RF-based access networks
Characteristics of such RF-based technologies:
● Suited for remote locations, when no DSL is available.
● There are various technologies used by the different providers. Find out what is available at your
location.
● Depending on the used frequency, transmission problems can occur during rain or snowfall, even over
short distances.
15.2 Choosing a suitable access technology
The technology depends on your intended use and the required bandwidth.
I want to use the remote access for... DSL LTE &
UMTS
GPRS TV cable Metro
ethernet
RF-based
Remote access to Desigo CC
o/+ o/+ - + + o/+
Remote access to another BACnet client
+ o o/- + + +
Connecting a Desigo system to Desigo CC
o/+ -/o - + + o/+
Alarm forwarding
+ + + + + +
Key
+ Good
o Slow but still possible
- Not possible or too slow