User Manual
Table Of Contents
- 1 Cyber security disclaimer
- 2 Preconditions of this document
- 3 System overview
- 4 Desigo workflow, tools and programming
- 4.1 Coverage of the technical process
- 4.2 Coverage of the system
- 4.3 Main tasks
- 4.4 Tools for different roles
- 4.5 Working with libraries
- 4.6 Working in parallel and subcontracting
- 4.7 Workflow for primary systems
- 4.8 Workflow for room automation classic
- 4.9 Workflow for Desigo room automation
- 4.10 Desigo Configuration Module (DCM)
- 4.11 Desigo Xworks Plus (XWP)
- 4.12 Desigo Automation Building Tool (ABT)
- 4.13 Programming in D-MAP
- 5 Control concept
- 6 Technical view
- 7 Global objects and functions
- 8 Events and COV reporting
- 9 Alarm management
- 9.1 Alarm sources
- 9.2 Alarm example
- 9.3 Effects of BACnet properties on alarm response
- 9.4 Alarm response of the function blocks
- 9.5 Alarm functions
- 9.6 Alarm management by notification class
- 9.7 Alarm routing over the network
- 9.8 Alarm queuing
- 9.9 Common alarms
- 9.10 Alarm suppression
- 9.11 Alarm message texts
- 10 Calendars and schedulers
- 11 Trending
- 12 Reports
- 13 Data storage
- 14 Network architecture
- 15 Remote access
- 16 Management platform
- 17 Desigo Control Point
- 18 Automation stations
- 19 Logical I/O blocks
- 20 Room automation
- 21 Desigo Open
- 22 System configuration
- 22.1 Technical limits and limit values
- 22.2 Maximum number of elements in a network area
- 22.3 Desigo room automation system function group limits
- 22.4 Devices
- 22.4.1 PXC..D automation stations / system controllers
- 22.4.2 LonWorks system controllers
- 22.4.3 Automation stations with LonWorks integration
- 22.4.4 PX Open integration (PXC001.D/-E.D)
- 22.4.5 PX Open integration (PXC001.D/-E.D + PXA40-RS1)
- 22.4.6 PX Open integration (PXC001.D/-E.D + PXA40-RS2)
- 22.4.7 PX KNX integration (PXC001.D/-E.D)
- 22.4.8 TX Open integration (TXI1/2/2-S.OPEN)
- 22.4.9 Number of data points on Desigo room automation stations
- 22.4.10 Number of data points for PXC3
- 22.4.11 Number of data points for DXR1
- 22.4.12 Number of data points for DXR2
- 22.4.13 PXM20 operator unit
- 22.4.14 PXM10 operator unit
- 22.4.15 Desigo Control Point
- 22.4.16 PXG3.L and PXG3.M BACnet routers
- 22.4.17 SX OPC
- 22.4.18 Desigo CC
- 22.4.19 Desigo Insight
- 22.4.20 Desigo Xworks Plus (XWP)
- 22.4.21 Desigo Automation Building Tool (ABT)
- 22.5 Applications
- 23 Compatibility
- 23.1 Desigo version compatibility definition
- 23.2 Desigo system compatibility basics
- 23.2.1 Compatibility with BACnet standard
- 23.2.2 Compatibility with operating systems
- 23.2.3 Compatibility with SQL servers
- 23.2.4 Compatibility with Microsoft Office
- 23.2.5 Compatibility with web browsers
- 23.2.6 Compatibility with ABT Go
- 23.2.7 Compatibility with VMware (virtual infrastructure)
- 23.2.8 Compatibility of software/libraries on the same PC
- 23.2.9 Hardware and firmware compatibility
- 23.2.10 Backward compatibility
- 23.2.11 Engineering compatibility
- 23.2.12 Compatibility with Desigo Configuration Module (DCM)
- 23.2.13 Compatibility with Desigo PX / Desigo room automation
- 23.2.14 Compatibility with Desigo RX tool
- 23.2.15 Compatibility with TX-I/O
- 23.2.16 Compatibility with TX Open
- 23.3 Desigo Control Point
- 23.4 Upgrading from Desigo V6.2 Update (or Update 2) to V6.2 Update 3
- 23.5 Siemens WEoF clients
- 23.6 Migration compatibility
- 23.7 Hardware requirements of Desigo software products
- 24 Desigo PXC4 and PXC5
- 25 Compatibility of Desigo V6.2 Update 3 with PXC4 and PXC5
Alarm managem
ent
Alarm sources
9
136 | 351 CM110664en_07
● AlarmCollection object
● Discipline I/O
1, 2
● Trend Log / Trend Log Multiple
● Group
1, 2
● Device Info object, which models the properties of an automation station as a complete entity
● Loop object
Key
1
Discipline I/Os, Groups, Time Scheduler and Trend Log Multiple support only system alarms, that is, only alarms of the
FAULT type. Both function blocks can transmit more than one system alarm. The parameters [Rlb] and [MsgTxt] provide
detailed information about the cause of the most recent alarm message. The messages are transmitted in the order in which
they occur, irrespective of the importance of the alarm.
2
These function blocks only exist in Desigo PX.
Only these alarm sources incorporate Intrinsic Reporting, and can thus generate their own alarms. If any
other value of a function block needs to be monitored for an alarm (e.g., the control signal for a controller
block), an Event Enrollment object must be added.
Alarm-generating function blocks include a range of interface variables which can be set as parameters to
determine the alarm response (Input Property) or to supply the relevant alarm state information (Output
Property). These interface variables are described further below. Some of the interface variables are
common to all alarm-generating block types, while others are specific to certain types of alarm-generating
blocks.
Alarm state machine in an alarm-generating function block
Alarm state machine
The response in the event of an alarm is modeled by an alarm state machine. Each alarm-generating block
incorporates an alarm state machine of this type. The alarm-related interface variables can therefore be
used to define the response of this state machine, to simulate state transitions, or to represent the current
status of the state machine itself.
Alarm state event states
The alarm state machine can assume one of three basic states (event states [EvtSta]):
● NORMAL: There is no alarm condition present
● OFFNORMAL: Alarm caused by an OFFNORMAL condition
● FAULT: Alarm caused by a FAULT condition
With analog blocks, the OFFNORMAL state is explicitly subdivided into the sub-states HIGH LIMIT and
LOW LIMIT, which are described in detail further below.
The current state of the alarm state machine in an alarm-generating block is displayed externally in the
form of the output variable [EvtSta] (event state) of the block concerned.