User Manual
Table Of Contents
- 1 Cyber security disclaimer
- 2 Preconditions of this document
- 3 System overview
- 4 Desigo workflow, tools and programming
- 4.1 Coverage of the technical process
- 4.2 Coverage of the system
- 4.3 Main tasks
- 4.4 Tools for different roles
- 4.5 Working with libraries
- 4.6 Working in parallel and subcontracting
- 4.7 Workflow for primary systems
- 4.8 Workflow for room automation classic
- 4.9 Workflow for Desigo room automation
- 4.10 Desigo Configuration Module (DCM)
- 4.11 Desigo Xworks Plus (XWP)
- 4.12 Desigo Automation Building Tool (ABT)
- 4.13 Programming in D-MAP
- 5 Control concept
- 6 Technical view
- 7 Global objects and functions
- 8 Events and COV reporting
- 9 Alarm management
- 9.1 Alarm sources
- 9.2 Alarm example
- 9.3 Effects of BACnet properties on alarm response
- 9.4 Alarm response of the function blocks
- 9.5 Alarm functions
- 9.6 Alarm management by notification class
- 9.7 Alarm routing over the network
- 9.8 Alarm queuing
- 9.9 Common alarms
- 9.10 Alarm suppression
- 9.11 Alarm message texts
- 10 Calendars and schedulers
- 11 Trending
- 12 Reports
- 13 Data storage
- 14 Network architecture
- 15 Remote access
- 16 Management platform
- 17 Desigo Control Point
- 18 Automation stations
- 19 Logical I/O blocks
- 20 Room automation
- 21 Desigo Open
- 22 System configuration
- 22.1 Technical limits and limit values
- 22.2 Maximum number of elements in a network area
- 22.3 Desigo room automation system function group limits
- 22.4 Devices
- 22.4.1 PXC..D automation stations / system controllers
- 22.4.2 LonWorks system controllers
- 22.4.3 Automation stations with LonWorks integration
- 22.4.4 PX Open integration (PXC001.D/-E.D)
- 22.4.5 PX Open integration (PXC001.D/-E.D + PXA40-RS1)
- 22.4.6 PX Open integration (PXC001.D/-E.D + PXA40-RS2)
- 22.4.7 PX KNX integration (PXC001.D/-E.D)
- 22.4.8 TX Open integration (TXI1/2/2-S.OPEN)
- 22.4.9 Number of data points on Desigo room automation stations
- 22.4.10 Number of data points for PXC3
- 22.4.11 Number of data points for DXR1
- 22.4.12 Number of data points for DXR2
- 22.4.13 PXM20 operator unit
- 22.4.14 PXM10 operator unit
- 22.4.15 Desigo Control Point
- 22.4.16 PXG3.L and PXG3.M BACnet routers
- 22.4.17 SX OPC
- 22.4.18 Desigo CC
- 22.4.19 Desigo Insight
- 22.4.20 Desigo Xworks Plus (XWP)
- 22.4.21 Desigo Automation Building Tool (ABT)
- 22.5 Applications
- 23 Compatibility
- 23.1 Desigo version compatibility definition
- 23.2 Desigo system compatibility basics
- 23.2.1 Compatibility with BACnet standard
- 23.2.2 Compatibility with operating systems
- 23.2.3 Compatibility with SQL servers
- 23.2.4 Compatibility with Microsoft Office
- 23.2.5 Compatibility with web browsers
- 23.2.6 Compatibility with ABT Go
- 23.2.7 Compatibility with VMware (virtual infrastructure)
- 23.2.8 Compatibility of software/libraries on the same PC
- 23.2.9 Hardware and firmware compatibility
- 23.2.10 Backward compatibility
- 23.2.11 Engineering compatibility
- 23.2.12 Compatibility with Desigo Configuration Module (DCM)
- 23.2.13 Compatibility with Desigo PX / Desigo room automation
- 23.2.14 Compatibility with Desigo RX tool
- 23.2.15 Compatibility with TX-I/O
- 23.2.16 Compatibility with TX Open
- 23.3 Desigo Control Point
- 23.4 Upgrading from Desigo V6.2 Update (or Update 2) to V6.2 Update 3
- 23.5 Siemens WEoF clients
- 23.6 Migration compatibility
- 23.7 Hardware requirements of Desigo software products
- 24 Desigo PXC4 and PXC5
- 25 Compatibility of Desigo V6.2 Update 3 with PXC4 and PXC5
Global objects and functions
Examples of global objects
7
CM110664en_07 129 | 351
Global calendar object: A logical object at site level. It exists in identical form (as a replicated object) on
each automation station of a site.
Local calendar object: Individual (unique) object that exists only on a particular automation station.
Local processing: Schedule objects in an automation station may reference the replicated calendar objects
in the device. A client may read the global calendar objects from any automation station.
Reasons for replication: Global exceptions (bank holidays, general holidays, etc.) can be modified centrally
in one location for the entire site. Ensures continuity of operation if the master fails.
User profile object
Global user profile object: A logical object at the site level. It exists in identical form (as a replicated object)
on each automation station of a site. There must be at least one user profile object.
There are no local user profile objects.
Local processing: Access control is based on the replicated user profile objects in the automation stations
(BACnet devices): No dependency on a server.
Reading of objects by a client: A client may read the global user profile objects from any automation
station.
Reasons for replication: Replication is designed to maintain consistency of the access rights throughout the
site, and to ensure continuity of operation in the event of the failure of the master.
Desigo CC
10664Z06en_07