User Manual

R~
75.71428571
Rp
12.37179148
Rz
530.
Rw
41200.
13.3630621
L=
178.5714286
x = 60 P(t) ? 60 @ü)=
0.102012
t = –0.5 R(t) ? @∏ 0.5 ±)=
0.691463
x=
σx=
Σx=
Σx
2
=
sx=
sx
2
=
Score
95
80
80
75
75
75
50
Entered data are kept in memory until @ c or m 3
are pressed. Before entering new data, clear the memory contents.
[Data Entry]
Single-variable data
Data
k
Data
&
frequency
k (To enter multiples of the same
data)
Two-variable data
Data
x &
Data
y k
Data
x &
Data
y &
frequency
k (To enter multiples
of the same data x and y.)
[Data Correction]
Correction prior to pressing k:
Delete incorrect data with N.
Correction after pressing k:
If nothing else but k is entered, press @J to delete,
then enter the correct value.
Single variable Statistical Calculations
m30
0.
95 k
1.
80 k
2.
k
3.
75 & 3 k
6.
50 k
7.
Regression Calculations
Given the two variable sample data (x,y), determine the standard
deviation of data sets x and y; the coefficients of the linear regres-
sion equation, and the correlation coefficient between x and y.
(Exponential, logarithmic, power, and inverse regression can also
be calculated in much the same way as linear regression.)
Quadratic Regression Calculation
Given the sample data shown, determine the coefficients a, b, and
c of the quadratic regression equation and estimate the following
values:
xy
12 41
813
52
23 200
15 71
m32
0.
12 & 41 k
1.
8 & 13 k
2.
5 & 2 k
3.
23 & 200 k
4.
15 & 71 k
5.
Ra
5.357506761
Rb
–3.120289663
0.503334057
x=10y’=? 10 @y
24.4880159
y=22x’=? 22 @x
9.63201409
û*
–3.432772026
ù
9.63201409
* When there are two x values.
m31
0.
2 & 5 k
1.
k
2.
12 & 24 k
3.
21 & 40 & 3 k
6.
15 & 25 k
7.
Ra
1.050261097
Rb
1.826044386
Rr
0.995176343
8.541216597
15.67223812
The following values are estimated:
x=3 y’=? 3 @y
6.528394256
y=46 x’=? 46 @x
24.61590706
xy
25
25
12 24
21 40
21 40
21 40
15 25
1
x
Σx = x
1
+ x
2
+ ··· + x
n
Σx
2
= x
1
2
+ x
2
2
+ ··· + x
n
2
x =
Σx
n
Σxy = x
1
y
1
+ x
2
y
2
+ ··· + x
n
y
n
Σy = y
1
+ y
2
+ ··· + y
n
Σy
2
= y
1
2
+ y
2
2
+ ··· + y
n
2
y =
Σy
n
σy =
Σy
2
– ny
2
n
sy =
Σy
2
– ny
2
n – 1
sx =
Σx
2
– nx
2
n – 1
σx =
Σx
2
– nx
2
n
Statistical Calculation Formulas
Type Regression formula
Linear y = a + bx
Exponential y = ae
bx
Logarithmic y = a + b • ln x
Power y = ax
b
Inverse y = a + b
Quadratic y = a + bx + cx
2
(n: Number of samples)
In the statistical calculation formulas, an error will occur when:
the absolute value of the intermediate result or calculation result
is equal to or greater than 1 × 10
100
.
the denominator is zero.
an attempt is made to take the square root of a negative number.
no solution exists in the quadratic regression calculation.
[Normal Probability Calculations]
t = ––––
x – x
σx
··· Standardization conversion formula
*P(t), Q(t), and R(t) will always take positive values, even when
t<0, because these functions follow the same principle used
when solving for an area.
Values for P(t), Q(t), and R(t) are given to six decimal places.