User Manual

k&~£pnzw^
¢PZWvrab©
xy≠° (t, P(, Q(, R()
DATA
95 m10
0.
80 95 k
1.
80 80 k
2.
75 k
3.
75 75 & 3 k
4.
75 50 k
5.
50
x= R~
75.71428571
σx= Rp
12.37179148
n= Rn
7.
Σx= Rz
530.
Σx
2
= Rw
41’200.
sx=
13.3630621
sx
2
= L=
178.5714286
(95–
x)
×10+50=
( 95 -K~)
sx
/K£* 10
+ 50 =
64.43210706
x = 60 P(t) ? @°1 60
@°0)=
0.102012
t = –0.5 R(t) ? @°3 0.5
±)=
0.691463
xy m11
0.
2 5 2 & 5 k
1.
2 5 k
2.
12 24 12 & 24 k
3.
21 40 21 & 40 & 3 k
4.
21 40 15 & 25 k
5.
21 40 Ra
1.050261097
15 25 Rb
1.826044386
Rr
0.995176343
8.541216597
15.67223812
x=3 y=? 3 @y
6.528394256
y=46 x=? 46 @x
24.61590706
xy m12
0.
12 41 12 & 41 k
1.
8 13 8 & 13 k
2.
5 2 5 & 2 k
3.
23 200 23 & 200 k
4.
15 71 15 & 71 k
5.
Ra
5.357506761
Rb
–3.120289663
0.503334057
x=10 y=? 10 @y
24.4880159
y=22 x=? 22 @x
9.63201409
@≠
–3.432772026
@≠
9.63201409
k[]
DATA
30 m10
0.
40 30 k
1.
40 40 & 2 k
2.
50 50 k
3.
DATA
30 ]]]
45 45 & 3 k X2=
45.
45 ] N2=
3.
45
60 ] 60 k X3=
60.
o_° (sec, min)
12°39’18.05” ª 12 o 39 o 18.05
[10] @_
12.65501389
123.678[60] 123.678 @_
123°40’40.8”
3h30m45s + 3 o 30 o 45 + 6 o
6h45m36s = [60] 45 o 36 =
10°16’21.”
1234°56’12” + 1234 o 56 o 12 +
0°0’34.567” = [60] 0 o 0 o 34.567 =
1234°56’47.”
3h45m – 3 o 45 - 1.69 =
1.69h = [60] @_
2°3’36.”
sin62°12’24” = [10] s 62 o 12 o 24=
0.884635235
24°[”] 24 o@°1
86’400.
1500”[’] 0 o 0 o 1500 @°2
25.
{},≠
ª 6 @, 4
x = 6
r = @{[
r
]
7.211102551
y = 4 θ = [°] @≠[θ]
33.69006753
@≠[
r
]
7.211102551
14 @, 36
r = 14
x = @}[x]
11.32623792
θ = 36[°] y = @≠[y]
8.228993532
@≠[x]
11.32623792
ß
V
0
= 15.3m/s ª 15.3 * 10 + 2 @•*
t = 10s ß 03 * 10 L=
643.3325
V
0
t+ — gt
2
= ?m
¥
125yd = ?m ª 125 5 =
114.3
(k, M, G, T, m,
ÌÌ
ÌÌ
Ì, n, p, f)
100m×10k= 100 @∑04*
10 @∑00=
1’000.
j”
5÷9=ANS ª”00”1 1
ANS×9= 5 / 9 =
0.6
[FIX,TAB=1] * 9 =*
1
5.0
5 / 9 =@j
0.6
* 9 =*
2
5.4
”03
*
1
5.5555555555555×10
–1
×9
*
2
0.6×9
1
2
Ez aszülék megfelel a 89/336/EGK sz. EK-inyelvben és annak 93/
68/EGK sz. módosításában foglalt követelményeknek.
Tento pfiístroj vyhovuje poÏadavkÛm smûrnice 89/336/EEC v platm
z 93/68/EEC.
x =
Σx
n
y =
Σy
n
sy =
Σy
2
– ny
2
n – 1
sx =
Σx
2
– nx
2
n – 1
Σx = x
1
+ x
2
+ ··· + x
n
Σx
2
= x
1
2
+ x
2
2
+ ··· + x
n
2
Σxy = x
1
y
1
+ x
2
y
2
+ ··· + x
n
y
n
Σy = y
1
+ y
2
+ ··· + y
n
Σy
2
= y
1
2
+ y
2
2
+ ··· + y
n
2
σy =
Σy
2
– ny
2
n
σx =
Σx
2
– nx
2
n