User Manual
Użyteczne wskazówki odnośnie funkcji rachunku
całkowego
Użyteczne wskazówki odnośnie trybu rozwiązywania
Kalkulator wykonuje rozwiązywanie równań przy użyciu metody Newtona
(zobacz paragraf „Metody rozwiązywania” w rozdziale 7). Z tego powodu
może się zdarzyć, że otrzymany wynik różni się od rzeczywistego
rozwiązania, lub kalkulator wyświetli komunikat błędu o niemożności
rozwiązania równania, które w zasadzie jest rozwiązywalne. W niniejszym
paragrafie zostanie wyjaśnione, jak uzyskać dokładniejsze wyniki oraz jak
rozwiązać równanie, przy którym kalkulator zgłasza błąd.
Kalkulator wykonuje rachunek całkowy w oparciu o regułę Simpsona. Z
tego względu może on potrzebować trochę czasu, zanim przeprowadzi
wszystkie obliczenia i wyświetli wynik. Cechą reguły Simpsona jest to, że
otrzymane przy jej użyciu wyniki mogą zawierać znaczące błędy.
Liczba przyrostów
Po wprowadzeniu równania całkowego i
naciśnięciu przycisku [∫ dx = ?]
kalkulator prosi o podanie granic
całkowania (a i b) oraz liczby przyrostów
(zobacz paragraf „Funkcja rachunku
różniczkowego” w rozdziale 7).
Dokładność rozwiązania zależy od
wybranej liczby przyrostów. Jeśli przycisk
[SOLVE] zostanie naciśnięty bez
wcześniejszego ustalenia liczby
przyrostów, to kalkulator automatycznie
przyjmie domyślne ustawienie n = 100.
Metoda Newtona
Liczba przyrostów
Ostatnia wartość
Pierwsza wartość
Styczne
Wynik
Pierwsza wartość
Metoda Newtona
Punkty przecięcia przerywanych linii
z osią x wskazują iteracyjne wartości
szacunkowe w metodzie Newtona
Metoda Newtona opiera się na
iteracyjnym przybliżaniu wartości przy
użyciu stycznych. Kalkulator wybiera
„wartość szacunkową rozwiązania” i
porównuje kolejno prawą i lewą stronę
równania. Zgodnie z wynikiem tego
porównania wybiera następnie
następną „wartość szacunkową
rozwiązania”. Procedura ta będzie
powtarzana tak długo, aż między
wartością lewej i prawej strony
równania prawie nie będzie różnicy.
Zwiększenie dokładności przy rachunku całkowym
Gdy niewielkie zmiany zakresu
całkowania powodują znaczące zmiany
wartości całki, lub gdy zakres
całkowania rozciąga się na dwie lub
więcej ćwiartek (kwadrantów), wynik
całkowania może być obarczony dużym
błędem (to samo dotyczy funkcji
cyklicznych).
Przybliżenie z nieprzewidzianym końcem
Gdy przycisk [SOLVE] zostanie naciśnięty po raz pierwszy, kalkulator odczyta
wartość przypisaną niewiadomej zmiennej, potraktuje tę wartość jako
początkową wartość szacunkową rozwiązania i spróbuje rozwiązać równanie.
Jeśli niewiadomej zmiennej nie została przypisana jeszcze żadna wartość, to
wykorzystana zostanie liczba zero. Jeśli przy użyciu pobranej wartości
szacunkowej nie zostanie znaleziony żaden możliwy do przyjęcia wynik, to
kalkulator spróbuje jeszcze raz z inną liczbą, w sumie wykorzystując 9 różnych
początkowych wartości szacunkowych.
W takich przypadkach lepiej jest
podzielić obszar całkowania na odcinki i
wykorzystać dużą liczbę przyrostów z
silnym nachyleniem lub zastosować
różne wyrażenia całkujące dla różnych
ćwiartek.
Jeśli żadna z tych wartości po iteracyjnym
przybliżaniu nie pozwoli na znalezienie
możliwego do przyjęcia wyniku – a
doprowadzi tylko do „nieprzewidzianego
końca” – kalkulator przerwie obliczanie i
wyświetli odpowiedni komunikat („Spróbuj
jeszcze raz! Zmień zakres lub wartość
zmiennej”).
str. 136 Kalkulator naukowy EL-5120 Kalkulator naukowy EL-5120 str. 137










