User's Manual
Table Of Contents
- GENERAL INFORMATION AND REQUIREMENTS
- INTRODUCTION
- EQUIPMENT DESCRIPTION
- Electronics Cabinet
- Local Control Unit (LCU) (1A1)
- Synthesizer Assembly (1A3A1, 1A3A11)
- Audio Generator CCA (1A3A2, 1A3A9)
- Monitor CCA (1A3A3, 1A3A10)
- Low Voltage Power Supply (LVPS) CCA (1A3A4, 1A3A8)
- Test Generator CCA (1A3A5)
- Remote Monitoring System (RMS) Processor CCA ( 1A3A6)
- Facilities CCA (1A3A7)
- Sideband Amplifier Assembly (1A4A1, 1A4A2, 1A4A6, 1A4A7)
- RF Monitor Assembly (1A4A4)
- Commutator Control CCA (1A4A5)
- Battery Charging Power Supply (BCPS) Assembly (1A5A1, 1A5A2)
- Carrier Power Amplifier Assembly (1A5A3, 1A5A4)
- Interface CCA (1A9)
- AC Power Monitor Assembly (1A6)
- Commutator CCA (1A10, 1A11)
- Portable Maintenance Data Terminal (PMDT)
- Transmitting Antenna System
- Field Monitor Antenna
- Counterpoise
- Equipment Shelter
- Battery Backup Unit (Optional)
- Electronics Cabinet
- EQUIPMENT SPECIFICATION DATA
- EQUIPMENT AND ACCESSORIES SUPPLIED
- OPTIONAL EQUIPMENT
- TECHNICAL DESCRIPTION
- INTRODUCTION
- OPERATING PRINCIPLES
- DVOR TRANSMITTER THEORY OF OPERATION
- Simplified System Block Diagram
- System Block Diagram Theory
- Frequency Synthesizer (1A3A1, 1A3A11)
- Audio Generator CCA (1A7, 1A23) Theory
- Audio Generator CCA Detailed Circuit Theory
- CSB Power Amplifier Assembly (1A5A3, 1A5A4)
- Bi-Directional Coupler (1DC1)
- Sideband Generator Assembly (1A4A1, 1A4A2, 1A4A6, 1A5A7)
- RF Monitor Assembly (1A4A4) Theory
- RF Monitor Assembly Block Diagram Theory
- RMS Processor Block Diagram Theory
- Facilities CCA Theory
- Interface CCA Theory
- Interface CCA Block Diagram Theory
- AC Power Monitor CCA Theory
- Local Control Unit Theory
- Local Control Unit Block Diagram Theory
- DC to DC Converter
- Power Fail Detectors
- Key Switch Registers
- Parallel Interface
- 1.8432MHz Oscillator/Divider Chains
- Positive Alarm Register
- Negative Alarm Register
- 20 Second Delay Counter
- LCU Transfer Control State Machine #1 and #2 and Discrete Controls
- LED Control
- Audible Alarm
- Monitor Alarm Interface
- Station Control Logic
- System Configuration Inputs
- Local Control Unit Block Diagram Theory
- Test Generator (1A3A5) CCA Theory
- Low Voltage Power Supply (1A3A4, 1A3A8) CCA Theory
- Monitor CCA (1A3A3, 1A3A9) Theory
- Power Panel Theory
- Battery Charger Power Supply (BCPS) Theory
- Battery Charger Detailed Circuit Theory
- Extender Board Block Diagram Theory
- Commutator Control CCA Theory
- Commutator CCA (1A10, 1A11) Theory
- PMDT (PORTABLE MAINTENANCE DATA TERMINAL (UNIT 2)
- BATTERIES (UNIT 3)
- FIELD MONITOR KIT (UNIT 4)
- OPERATION
- INTRODUCTION
- REMOTE CONTROL STATUS UNIT (RCSU)
- REMOTE STATUS UNIT (RSU)
- REMOTE STATUS DISPLAY UNIT (RSDU)
- PORTABLE MAINTENANCE DATA TERMINAL (PMDT)
- PMDT SCREENS
- General
- Menus
- System Status at a Glance - Sidebar Status and Control
- Screen Area
- Configuring the PMDT
- Connecting to the VOR
- RMS Screens
- Monitor Screens
- All Monitor Screens
- Monitor 1 & 2 Screens
- Transmitter Data Screens
- Transmitter Configuration Screens
- Transmitter Commands
- Diagnostics Screen
- Controlling the Transmitter via the PMDT
- RMM
- CONTROLS AND INDICATORS
- POWER CONTROL PANEL
- LOCAL CONTROL UNIT (LCU)
- BCPS Asssembly Assembly (1A5A3, 1A5A4)
- Carrier Amplifier Assembly (1A5A3, 1A5A4)
- Monitor CCA (1A3A3, 1A3A10)
- Remote Monitoring System (RMS) CCA
- Facilities CCA (1A3A7)
- Synthesizer CCA (1A3A1, 1A3A11)
- Sideband Generator Assembly (1A4A1, 1A4A2, 1A4A5, 1A4A6)
- Audio Generator CCA (1A3A2, 1A3A9)
- Low Voltage Power Supply (LVPS) CCA (1A3A4,1A3A8)
- Test Generator CCA (1A3A5)
- RF Monitor Assembly (1A4A4)
- STANDARDS AND TOLERANCES
- PERIODIC MAINTENANCE
- MAINTENANCE PROCEDURES
- INTRODUCTION
- PERFORMANCE CHECK PROCEDURES
- Battery Backup Transfer Performance Check
- Carrier Output Power Performance Check
- Carrier Frequency Performance Check
- Monitor 30 Hz and 9960 Hz Modulation Percentage and Deviation Ratio Performance Check
- Modulation Frequency Performance Check
- Antenna VSWR Performance Check
- Automatic Transfer Performance Checks (Dual Equipment only)
- VOR Monitor Performance Check
- Monitor Integrity Test of VOR Monitor (Refer to Section 3.6.8.2.2)
- RSCU Operation Performance Check
- Identification Frequency and Modulation Level Checks
- EQUIPMENT INSPECTION PROCEDURES
- ALIGNMENT PROCEDURES
- Battery Charging Power Supply (BCPS) Alignment Procedures
- Alarm Volume Adjustment Procedure
- RMS Facilities Exterior and Interior Temperature Calibration
- Reassign Main/Standby Transmitters (Dual Systems Only)
- Verification of BITE VSWR Calibration
- Verification of BITE Frequency Counter Calibration
- Verification of BITE Wattmeter Calibration
- RMS Lithium Battery Check Procedure
- Replacing RMS CPU (1A3A6) CCA
- Update of DVOR Software
- Changing the Station Rotation (Azimuth)
- Changing the Monitoring Offsets
- DME Keying Check
- DVOR Frequency Synthesizer Alignment
- DVOR Sideband Amplifier Alignment
- Antenna VSWR Check for New Frequency
- CORRECTIVE MAINTENANCE
- PARTS LIST
- INSTALLATION, INTEGRATION, AND CHECKOUT
- INTRODUCTION
- SITE INFORMATION
- UNPACKING AND REPACKING
- INPUT POWER REQUIREMENT SUMMARY
- INSTALLATION PROCEDURES
- Tools and Test Equipment Required
- Counterpoise and Shelter Foundation Installation
- Shelter Installation
- Counterpoise Installation
- Initial Conditions
- Sideband Antenna Installation
- Carrier Antenna Installation
- Installation of Field Monitor Antenna
- Antenna Cable Exterior Cable Entrance Installation
- Air Conditioner Installation
- Transmitter Cabinet Installation
- Battery Back Up Installation
- DC Voltage and Battery Installation
- AC Voltage Installation
- Connecting DME Keyer Wiring
- RCSU and RMM Connections
- Obstruction Light Installation and Wiring
- Cutting Antenna Cables to Proper Electrical Length
- Tuning the Antennas
- Sideband RF Feed Cables to Commutator Connections
- INSPECTION
- INITIAL STARTUP AND PRELIMINARY TESTING
- Input Voltage Checks
- Installing Modules in Transmitter Cabinet
- Turn on Procedure
- PMDT Hookup and Setup
- Site Adjustments and Configurations
- DVOR Station Power-Up
- Log-On Procedure
- Setting Date and Time
- Setting Station's Descriptor
- Password Change
- Setting System Configuration
- Transmitter Tuning Procedures
- Setting Transmitter Operating Parameters
- Setting Monitor Alarm Limits
- Setting Monitor Az Angle Low Limit
- Setting Monitor Az Angle High Limit
- Setting High Monitor 30 Hz Mod Low Limit
- Setting Monitor 30 Hz Mod High Limit
- Setting Monitor 9960 Hz Mod Low Limit
- Setting Monitor 9960 Hz Mod High Limit
- Setting Monitor 9960 Hz Dev Low Limit
- Setting Monitor 9960 Hz Dev High Limit
- Setting Monitor Field Intensity Low Limit
- Setting Monitor Field Intensity High Limits
- Records
- INSTALLATION VERIFICATION TEST
- SOFTWARE
- TROUBLESHOOTING SUPPORT
Model 1150A DVOR
2-40 Rev. - November, 2008
This document contains proprietary information and such information may not be disclosed
to others for any purposes without written permission from SELEX Sistemi Integrati Inc.
Ethernet module J9 has an RJ45 connector, is TVS-protected by U4 through U6, is powered by DC-DC converter
PS1, and has its TTL signals converted to RS232 by U7 before routing eventually to the RMS CCA. Diodes CR41
through CR43 insure the proper voltage level before entry into PS1. PS1 converts +24VDC to +3.3VDC and diode
CR72 provide TVS protection.
All TACAN antenna system controller signals are TVS-protected by diodes CR45 through CR67 before routed to
DB37 connector J3.
Test header J8 is used for factory testing.
The RCSU has two possible paths for communications; either tip-n-ring to terminal block TB2-1 and TB2-2 or
RS232 to DB9 connector J5. The active path is configured by a system configuration DIP switch on the Control
Backplane CCA. Diodes CR21 through CR24 provide TVS protection for the RS232 signals while resistors R21
through R24, spark-gap V2, sidactor Q3, and balun L2 provide the TVS protection for the tip and ring signals.
The PMDT also has two possible paths for communications; either tip-n-ring to terminal block TB2-3 and TB2-4 or
RS232 to DB9 connector J6. The active path is configured by a system configuration DIP switch on the Low Power
Backplane CCA. Diodes CR25 through CR28 provide TVS protection for the RS232 signals while resistors R17
through R20, spark-gap V1, sidactor Q2, and balun L3 provide the TVS protection for the tip and ring signals.
Spare I/O terminal block TB1 provides connection to ten spare analog inputs, four spare digital outputs, and four
spare digital inputs. All of these signals are TVS-protected by diodes CR1 through CR18. All of these signals
eventually route to the Facilities CCA.
External interconnect terminal block TB2 provides connection for the remainder of the signals of the Interface CCA.
The SMOKE_DETECTOR and INTRUSION_SENSOR signals are TVS-protected by diodes CR37 and CR38. The
ILS-VOR RS-232 signals are TVS-protected by diodes CR19 and CR20.
The INTERLOCK+ and INTERLOCK- signals are connected to opto-coupler U3:A. Full power supply isolation can
be achieved by removing jumpers JP1A and JP1B from header JP1 if the customer is willing to provide an external
supply. Current is set and steered through the LED of U3:A by resistors R14 through R15 and diodes CR36 and
CR69. The transistor output of U3:A is TVS-protected by diode CR39.
The EXT_KEY_IN+ and EXT_KEY_IN- signals are connected to opto-coupler U3:B. Full power supply isolation
can be achieved by removing jumpers JP2A and JP2B from header JP2 if the customer is willing to provide an
external supply. Current is set and steered through the LED of U3:B by resistors R5 through R7 and diodes CR32
and CR70. The transistor output of U3:B is TVS-protected by diode CR40.
The EXT_KEY_OUT signal is TVS-protected by diode CR35 before routing to pull-down resistor R9 and transistor
Q1. Resistors R10 and R11 bias the LED of opto-coupler U2 while diodes CR33 and CR34 transient protect the
transistor outputs of opto-coupler U2. The transistor outputs are labeled EXT_KEY_OUT+ and EXT_KEY_OUT-
before routed to terminal block TB1.
The MON1_AUDIO_ID and MON2_AUDIO_ID are transient protected by diodes CR30 and CR31 before being
voltage-divided by resistors R1/R3 and R2/R4. The lower voltage level signals are called DET_IDENT1 and
DET_IDENT2 before being routed to terminal block TB2.
2.3.2.13
AC Power Monitor CCA Theory
The AC Power Monitor CCA provides a means for the VOR system to measure the AC current and voltage levels of
the obstruction lights and of the VOR system itself.