Datasheet
Table Of Contents
- Table 1. Device summary
- 1 Introduction
- 2 Description
- 3 Functional overview
- 3.1 Architecture
- 3.2 Arm Cortex-M4 core
- 3.3 Adaptive real-time memory accelerator (ART Accelerator)
- 3.4 Memory protection unit (MPU)
- 3.5 Memories
- 3.6 Security memory management
- 3.7 Boot modes
- 3.8 Sub-GHz radio
- 3.9 Power supply management
- 3.10 Low-power modes
- 3.11 Peripheral interconnect matrix
- 3.12 Reset and clock controller (RCC)
- 3.13 General-purpose inputs/outputs (GPIOs)
- 3.14 Directly memory access controller (DMA)
- 3.15 Interrupts and events
- 3.16 Analog-to-digital converter (ADC)
- 3.17 Voltage reference buffer (VREFBUF)
- 3.18 Digital-to-analog converter (DAC)
- 3.19 Comparator (COMP)
- 3.20 True random number generator (RNG)
- 3.21 Advanced encryption standard hardware accelerator (AES)
- 3.22 Public key accelerator (PKA)
- 3.23 Timer and watchdog
- 3.24 Real-time clock (RTC), tamper and backup registers
- 3.25 Inter-integrated circuit interface (I2C)
- 3.26 Universal synchronous/asynchronous receiver transmitter (USART/UART)
- 3.27 Low-power universal asynchronous receiver transmitter (LPUART)
- 3.28 Serial peripheral interface (SPI)/integrated-interchip sound interface (I2S)
- 3.29 Development support
- 4 Pinouts, pin description and alternate functions
- 5 Electrical characteristics
- 5.1 Parameter conditions
- 5.2 Absolute maximum ratings
- 5.3 Operating conditions
- 5.3.1 Main performances
- 5.3.2 General operating conditions
- 5.3.3 Sub-GHz radio characteristics
- Table 26. Sub-GHz radio power consumption
- Table 27. Sub-GHz radio power consumption in transmit mode (SMPS ON)
- Table 28. Sub-GHz radio general specifications
- Table 29. Sub-GHz radio receive mode specifications
- Table 30. Sub-GHz radio transmit mode specifications
- Table 31. Sub-GHz radio power management specifications
- 5.3.4 Operating conditions at power-up/power-down
- 5.3.5 Embedded reset and power-control block characteristics
- 5.3.6 Embedded voltage reference
- 5.3.7 Supply current characteristics
- Typical and maximum current consumption
- Table 35. Current consumption in Run and LPRun modes, CoreMark code with data running from Flash memory, ART enable (cache ON, prefetch OFF)
- Table 36. Current consumption in Run and LPRun modes, CoreMark code with data running from SRAM1
- Table 37. Typical current consumption in Run and LPRun modes, with different codes running from Flash memory, ART enable (cache ON, prefetch OFF)
- Table 38. Typical current consumption in Run and LPRun modes, with different codes running from SRAM1
- Table 39. Current consumption in Sleep and LPSleep modes, Flash memory ON
- Table 40. Current consumption in LPSleep mode, Flash memory in power-down
- Table 41. Current consumption in Stop 2 mode
- Table 42. Current consumption in Stop 1 mode
- Table 43. Current consumption in Stop 0 mode
- Table 44. Current consumption in Standby mode
- Table 45. Current consumption in Shutdown mode
- Table 46. Current consumption in VBAT mode
- Table 47. Current under Reset condition
- I/O system current consumption
- On-chip peripheral current consumption
- Typical and maximum current consumption
- 5.3.8 Wakeup time from low-power modes and voltage scaling transition times
- 5.3.9 External clock source characteristics
- 5.3.10 Internal clock source characteristics
- 5.3.11 PLL characteristics
- 5.3.12 Flash memory characteristics
- 5.3.13 EMC characteristics
- 5.3.14 Electrical sensitivity characteristics
- 5.3.15 I/O current injection characteristics
- 5.3.16 I/O port characteristics
- 5.3.17 NRST pin characteristics
- 5.3.18 Analog switches booster
- 5.3.19 Analog-to-digital converter characteristics
- 5.3.20 Temperature sensor characteristics
- 5.3.21 VBAT monitoring characteristics
- 5.3.22 Voltage reference buffer characteristics
- 5.3.23 Digital-to-analog converter characteristics
- 5.3.24 Comparator characteristics
- 5.3.25 Timers characteristics
- 5.3.26 Communication interfaces characteristics
- 6 Package information
- 6.1 UFBGA73 package information
- Figure 26. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array package outline
- Table 90. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array mechanical data
- Figure 27. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array recommended footprint
- Table 91. UFBGA recommended PCB design rules (0.5 mm pitch BGA)
- Device marking for UFBGA73
- 6.2 Package thermal characteristics
- 6.1 UFBGA73 package information
- 7 Ordering information
- 8 Revision history
Electrical characteristics STM32WLE5J8/JB/JC
60/135 DS13105 Rev 4
2. V
IN
maximum must always be respected. Refer to the next table for the maximum allowed injected current values.
3. This formula must be applied only on the power supplies related to the I/O structure described in Table 19:
STM32WLE5J8/JB/JC pin definition.
4. To sustain a voltage higher than 4 V, the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 22. Current characteristics
Symbol Ratings Max Unit
IV
DD
Total current into sum of all V
DD
power lines (source)
(1)
130
mA
IV
SS
Total current out of sum of all V
SS
ground lines (sink)
(1)
130
IV
DD(PIN)
Maximum current into each
VDD
power pin (source)
(1)
100
IV
SS(PIN)
Maximum current out of each
VSS
ground pin (sink)
(1)
100
I
IO(PIN)
Output current sunk by any I/O and control pin, except FT_f 20
Output current sunk by any FT_f pin 20
Output current sourced by any I/O and control pin 20
I
IO(PIN)
Total output current sunk by sum of all I/Os and control pins
(2)
100
Total output current sourced by sum of all I/Os and control pins
(2)
100
I
INJ(PIN)
(3)
Injected current on FT_xxx, TT_xx, RST and B pins, except PB0 and PB1 –5 / +0
(4)
Injected current on PB0 and PB1 -5/0
|I
INJ(PIN)
|
Total injected current (sum of all I/Os and control pins)
(5)
25
1. All main power (VDD, VDDRF, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external
power supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins.
3. Positive injection (when V
IN
> V
DD
) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A negative injection is induced by V
IN
< V
SS
. I
INJ(PIN)
must never be exceeded. Refer also to the previous table for the
maximum allowed input voltage values.
5. When several inputs are submitted to a current injection, the maximum
|
I
INJ(PIN)
|
is the absolute sum of the negative
injected currents (instantaneous values).
Table 23. Thermal characteristics
Symbol Ratings Value Unit
T
STG
Storage temperature range -65 to +150
°C
T
J
Maximum junction temperature 105