Datasheet
Table Of Contents
- Table 1. Device summary
- 1 Introduction
- 2 Description
- 3 Functional overview
- 3.1 Architecture
- 3.2 Arm Cortex-M4 core
- 3.3 Adaptive real-time memory accelerator (ART Accelerator)
- 3.4 Memory protection unit (MPU)
- 3.5 Memories
- 3.6 Security memory management
- 3.7 Boot modes
- 3.8 Sub-GHz radio
- 3.9 Power supply management
- 3.10 Low-power modes
- 3.11 Peripheral interconnect matrix
- 3.12 Reset and clock controller (RCC)
- 3.13 General-purpose inputs/outputs (GPIOs)
- 3.14 Directly memory access controller (DMA)
- 3.15 Interrupts and events
- 3.16 Analog-to-digital converter (ADC)
- 3.17 Voltage reference buffer (VREFBUF)
- 3.18 Digital-to-analog converter (DAC)
- 3.19 Comparator (COMP)
- 3.20 True random number generator (RNG)
- 3.21 Advanced encryption standard hardware accelerator (AES)
- 3.22 Public key accelerator (PKA)
- 3.23 Timer and watchdog
- 3.24 Real-time clock (RTC), tamper and backup registers
- 3.25 Inter-integrated circuit interface (I2C)
- 3.26 Universal synchronous/asynchronous receiver transmitter (USART/UART)
- 3.27 Low-power universal asynchronous receiver transmitter (LPUART)
- 3.28 Serial peripheral interface (SPI)/integrated-interchip sound interface (I2S)
- 3.29 Development support
- 4 Pinouts, pin description and alternate functions
- 5 Electrical characteristics
- 5.1 Parameter conditions
- 5.2 Absolute maximum ratings
- 5.3 Operating conditions
- 5.3.1 Main performances
- 5.3.2 General operating conditions
- 5.3.3 Sub-GHz radio characteristics
- Table 26. Sub-GHz radio power consumption
- Table 27. Sub-GHz radio power consumption in transmit mode (SMPS ON)
- Table 28. Sub-GHz radio general specifications
- Table 29. Sub-GHz radio receive mode specifications
- Table 30. Sub-GHz radio transmit mode specifications
- Table 31. Sub-GHz radio power management specifications
- 5.3.4 Operating conditions at power-up/power-down
- 5.3.5 Embedded reset and power-control block characteristics
- 5.3.6 Embedded voltage reference
- 5.3.7 Supply current characteristics
- Typical and maximum current consumption
- Table 35. Current consumption in Run and LPRun modes, CoreMark code with data running from Flash memory, ART enable (cache ON, prefetch OFF)
- Table 36. Current consumption in Run and LPRun modes, CoreMark code with data running from SRAM1
- Table 37. Typical current consumption in Run and LPRun modes, with different codes running from Flash memory, ART enable (cache ON, prefetch OFF)
- Table 38. Typical current consumption in Run and LPRun modes, with different codes running from SRAM1
- Table 39. Current consumption in Sleep and LPSleep modes, Flash memory ON
- Table 40. Current consumption in LPSleep mode, Flash memory in power-down
- Table 41. Current consumption in Stop 2 mode
- Table 42. Current consumption in Stop 1 mode
- Table 43. Current consumption in Stop 0 mode
- Table 44. Current consumption in Standby mode
- Table 45. Current consumption in Shutdown mode
- Table 46. Current consumption in VBAT mode
- Table 47. Current under Reset condition
- I/O system current consumption
- On-chip peripheral current consumption
- Typical and maximum current consumption
- 5.3.8 Wakeup time from low-power modes and voltage scaling transition times
- 5.3.9 External clock source characteristics
- 5.3.10 Internal clock source characteristics
- 5.3.11 PLL characteristics
- 5.3.12 Flash memory characteristics
- 5.3.13 EMC characteristics
- 5.3.14 Electrical sensitivity characteristics
- 5.3.15 I/O current injection characteristics
- 5.3.16 I/O port characteristics
- 5.3.17 NRST pin characteristics
- 5.3.18 Analog switches booster
- 5.3.19 Analog-to-digital converter characteristics
- 5.3.20 Temperature sensor characteristics
- 5.3.21 VBAT monitoring characteristics
- 5.3.22 Voltage reference buffer characteristics
- 5.3.23 Digital-to-analog converter characteristics
- 5.3.24 Comparator characteristics
- 5.3.25 Timers characteristics
- 5.3.26 Communication interfaces characteristics
- 6 Package information
- 6.1 UFBGA73 package information
- Figure 26. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array package outline
- Table 90. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array mechanical data
- Figure 27. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array recommended footprint
- Table 91. UFBGA recommended PCB design rules (0.5 mm pitch BGA)
- Device marking for UFBGA73
- 6.2 Package thermal characteristics
- 6.1 UFBGA73 package information
- 7 Ordering information
- 8 Revision history
Functional overview STM32WLE5J8/JB/JC
38/135 DS13105 Rev 4
The events generated by the general-purpose timers (TIMx) can be internally connected to
the ADC start triggers, to allow the application to synchronize A/D conversions with timers.
3.16.1 Temperature sensor
The temperature sensor (TS) generates a V
TS
voltage that varies linearly with temperature.
The temperature sensor is internally connected to the ADC VIN[12] input channel, to
convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor may
vary from part to part due to process variation, the uncalibrated internal temperature sensor
is suitable only for relative temperature measurements.
To improve the accuracy of the temperature sensor, each part is individually factory-
calibrated by ST. The resulting calibration data is stored in the device engineering bytes,
accessible in read-only mode.
3.16.2 Internal voltage reference (V
REFINT
)
V
REFINT
provides a stable (bandgap) voltage output for the ADC and comparators. V
REFINT
is internally connected to the ADC VIN[13] input channel.
V
REFINT
is individually and precisely measured, for each part, by ST, during production test
and stored in the device engineering bytes. It is accessible in read-only mode.
3.16.3 V
BAT
battery voltage monitoring
This embedded hardware feature allows the application to measure the V
BAT
battery voltage
using the ADC VIN[14] input channel. As V
BAT
may be higher than V
DDA
, and thus outside
the ADC input range, the VBAT pin is internally connected to a bridge divider by three. As a
consequence, the converted digital value is one third the V
BAT
voltage.
Table 12. Temperature sensor calibration values
Calibration value
name
Description Memory address
TS-CAL1
TS ADC raw data acquired at 30 °C (± 5 °C),
V
DDA
= V
REF+
= 3.3 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at 130 °C (± 5 °C),
V
DDA
= V
REF+
= 3.3 V (± 10 mV)
0x1FFF 75C8 - 0x1FFF 75C9
Table 13. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT
Raw data acquired at 30 °C (± 5 °C),
V
DDA
= V
REF+
= 3.0 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB