Datasheet
Table Of Contents
- Table 1. Device summary
- 1 Introduction
- 2 Description
- 3 Functional overview
- 3.1 Architecture
- 3.2 Arm Cortex-M4 core
- 3.3 Adaptive real-time memory accelerator (ART Accelerator)
- 3.4 Memory protection unit (MPU)
- 3.5 Memories
- 3.6 Security memory management
- 3.7 Boot modes
- 3.8 Sub-GHz radio
- 3.9 Power supply management
- 3.10 Low-power modes
- 3.11 Peripheral interconnect matrix
- 3.12 Reset and clock controller (RCC)
- 3.13 General-purpose inputs/outputs (GPIOs)
- 3.14 Directly memory access controller (DMA)
- 3.15 Interrupts and events
- 3.16 Analog-to-digital converter (ADC)
- 3.17 Voltage reference buffer (VREFBUF)
- 3.18 Digital-to-analog converter (DAC)
- 3.19 Comparator (COMP)
- 3.20 True random number generator (RNG)
- 3.21 Advanced encryption standard hardware accelerator (AES)
- 3.22 Public key accelerator (PKA)
- 3.23 Timer and watchdog
- 3.24 Real-time clock (RTC), tamper and backup registers
- 3.25 Inter-integrated circuit interface (I2C)
- 3.26 Universal synchronous/asynchronous receiver transmitter (USART/UART)
- 3.27 Low-power universal asynchronous receiver transmitter (LPUART)
- 3.28 Serial peripheral interface (SPI)/integrated-interchip sound interface (I2S)
- 3.29 Development support
- 4 Pinouts, pin description and alternate functions
- 5 Electrical characteristics
- 5.1 Parameter conditions
- 5.2 Absolute maximum ratings
- 5.3 Operating conditions
- 5.3.1 Main performances
- 5.3.2 General operating conditions
- 5.3.3 Sub-GHz radio characteristics
- Table 26. Sub-GHz radio power consumption
- Table 27. Sub-GHz radio power consumption in transmit mode (SMPS ON)
- Table 28. Sub-GHz radio general specifications
- Table 29. Sub-GHz radio receive mode specifications
- Table 30. Sub-GHz radio transmit mode specifications
- Table 31. Sub-GHz radio power management specifications
- 5.3.4 Operating conditions at power-up/power-down
- 5.3.5 Embedded reset and power-control block characteristics
- 5.3.6 Embedded voltage reference
- 5.3.7 Supply current characteristics
- Typical and maximum current consumption
- Table 35. Current consumption in Run and LPRun modes, CoreMark code with data running from Flash memory, ART enable (cache ON, prefetch OFF)
- Table 36. Current consumption in Run and LPRun modes, CoreMark code with data running from SRAM1
- Table 37. Typical current consumption in Run and LPRun modes, with different codes running from Flash memory, ART enable (cache ON, prefetch OFF)
- Table 38. Typical current consumption in Run and LPRun modes, with different codes running from SRAM1
- Table 39. Current consumption in Sleep and LPSleep modes, Flash memory ON
- Table 40. Current consumption in LPSleep mode, Flash memory in power-down
- Table 41. Current consumption in Stop 2 mode
- Table 42. Current consumption in Stop 1 mode
- Table 43. Current consumption in Stop 0 mode
- Table 44. Current consumption in Standby mode
- Table 45. Current consumption in Shutdown mode
- Table 46. Current consumption in VBAT mode
- Table 47. Current under Reset condition
- I/O system current consumption
- On-chip peripheral current consumption
- Typical and maximum current consumption
- 5.3.8 Wakeup time from low-power modes and voltage scaling transition times
- 5.3.9 External clock source characteristics
- 5.3.10 Internal clock source characteristics
- 5.3.11 PLL characteristics
- 5.3.12 Flash memory characteristics
- 5.3.13 EMC characteristics
- 5.3.14 Electrical sensitivity characteristics
- 5.3.15 I/O current injection characteristics
- 5.3.16 I/O port characteristics
- 5.3.17 NRST pin characteristics
- 5.3.18 Analog switches booster
- 5.3.19 Analog-to-digital converter characteristics
- 5.3.20 Temperature sensor characteristics
- 5.3.21 VBAT monitoring characteristics
- 5.3.22 Voltage reference buffer characteristics
- 5.3.23 Digital-to-analog converter characteristics
- 5.3.24 Comparator characteristics
- 5.3.25 Timers characteristics
- 5.3.26 Communication interfaces characteristics
- 6 Package information
- 6.1 UFBGA73 package information
- Figure 26. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array package outline
- Table 90. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array mechanical data
- Figure 27. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array recommended footprint
- Table 91. UFBGA recommended PCB design rules (0.5 mm pitch BGA)
- Device marking for UFBGA73
- 6.2 Package thermal characteristics
- 6.1 UFBGA73 package information
- 7 Ordering information
- 8 Revision history
Functional overview STM32WLE5J8/JB/JC
24/135 DS13105 Rev 4
The different supply configurations are shown in the figure below.
Figure 6. Supply configurations
The LDO or SMPS step-down converter operating mode can be configured by one of the
following:
• by the MCU using the SMPSEN setting in PWR control register 5 (PWR_CR5), that
depends upon the MCU system operating mode (Run, Stop, Standby or Shutdown).
• by the sub-GHz radio using SetRegulatorMode() command and the sub-GHz radio
operating mode (Sleep, Calibrate, Standby, Standby with HSE32 or Active).
After any POR and NRST reset, the LDO mode is selected. The SMPS selection has priority
over LDO selection.
While the sub-GHz radio is in Standby with HSE32 or in Active mode, the supply mode is
not altered until the sub-GHz radio enters Standby or Sleep mode. The sub-GHz radio
activity may add a delay for entering the MCU software requested supply mode.
The LDO or SMPS supply mode can be checked with the SMPSRDY flag in Power status
register 2 (PWR_SR2).
Note: When the radio is active, the supply mode is not changed until after the radio activity is
finished.
During Stop 1, Stop 2 and Standby modes, when the sub-GHz radio is not active, the LDO
or SMPS step-down converter is switched off. When exiting low-power modes (except
Shutdown), the SMPS step-down converter is set by hardware to the mode selected by the
SMPSEN bit in PWR control register 5 (PWR_CR5). SMPSEN is retained in Stop and
Standby modes.
Independently from the MCU software selected supply operating mode, the sub-GHz radio
allows the supply mode selection while the sub-GHz radio is active (thanks to the sub-GHz
radio SetRegulatorMode()command).
The maximum load current delivered by the SMPS can be selected by the sub- GHz radio
SUBGHZ_SMPSC2R register.
The inrush current of the LDO and SMPS step-down converter can be controlled via the
sub- GHz radio SUBGHZ_PCR register. This information is retained in all but the sub-GHz
radio Deep-sleep mode.
MSv50974V1
LDO/SMPS
LDO/SMPS supply LDO supply
RF
LDO
MR LPR
V
DDRF1V5
V
FBSMPS
V
LXSMPS
V
DDSMPS
V
DD
LDO/SMPS
RF
LDO
MR LPR
V
DDRF1V5
V
FBSMPS
V
LXSMPS
V
DDSMPS
V
DD