Datasheet
Table Of Contents
- Table 1. Device summary
- 1 Introduction
- 2 Description
- 3 Functional overview
- 3.1 Architecture
- 3.2 Arm Cortex-M4 core
- 3.3 Adaptive real-time memory accelerator (ART Accelerator)
- 3.4 Memory protection unit (MPU)
- 3.5 Memories
- 3.6 Security memory management
- 3.7 Boot modes
- 3.8 Sub-GHz radio
- 3.9 Power supply management
- 3.10 Low-power modes
- 3.11 Peripheral interconnect matrix
- 3.12 Reset and clock controller (RCC)
- 3.13 General-purpose inputs/outputs (GPIOs)
- 3.14 Directly memory access controller (DMA)
- 3.15 Interrupts and events
- 3.16 Analog-to-digital converter (ADC)
- 3.17 Voltage reference buffer (VREFBUF)
- 3.18 Digital-to-analog converter (DAC)
- 3.19 Comparator (COMP)
- 3.20 True random number generator (RNG)
- 3.21 Advanced encryption standard hardware accelerator (AES)
- 3.22 Public key accelerator (PKA)
- 3.23 Timer and watchdog
- 3.24 Real-time clock (RTC), tamper and backup registers
- 3.25 Inter-integrated circuit interface (I2C)
- 3.26 Universal synchronous/asynchronous receiver transmitter (USART/UART)
- 3.27 Low-power universal asynchronous receiver transmitter (LPUART)
- 3.28 Serial peripheral interface (SPI)/integrated-interchip sound interface (I2S)
- 3.29 Development support
- 4 Pinouts, pin description and alternate functions
- 5 Electrical characteristics
- 5.1 Parameter conditions
- 5.2 Absolute maximum ratings
- 5.3 Operating conditions
- 5.3.1 Main performances
- 5.3.2 General operating conditions
- 5.3.3 Sub-GHz radio characteristics
- Table 26. Sub-GHz radio power consumption
- Table 27. Sub-GHz radio power consumption in transmit mode (SMPS ON)
- Table 28. Sub-GHz radio general specifications
- Table 29. Sub-GHz radio receive mode specifications
- Table 30. Sub-GHz radio transmit mode specifications
- Table 31. Sub-GHz radio power management specifications
- 5.3.4 Operating conditions at power-up/power-down
- 5.3.5 Embedded reset and power-control block characteristics
- 5.3.6 Embedded voltage reference
- 5.3.7 Supply current characteristics
- Typical and maximum current consumption
- Table 35. Current consumption in Run and LPRun modes, CoreMark code with data running from Flash memory, ART enable (cache ON, prefetch OFF)
- Table 36. Current consumption in Run and LPRun modes, CoreMark code with data running from SRAM1
- Table 37. Typical current consumption in Run and LPRun modes, with different codes running from Flash memory, ART enable (cache ON, prefetch OFF)
- Table 38. Typical current consumption in Run and LPRun modes, with different codes running from SRAM1
- Table 39. Current consumption in Sleep and LPSleep modes, Flash memory ON
- Table 40. Current consumption in LPSleep mode, Flash memory in power-down
- Table 41. Current consumption in Stop 2 mode
- Table 42. Current consumption in Stop 1 mode
- Table 43. Current consumption in Stop 0 mode
- Table 44. Current consumption in Standby mode
- Table 45. Current consumption in Shutdown mode
- Table 46. Current consumption in VBAT mode
- Table 47. Current under Reset condition
- I/O system current consumption
- On-chip peripheral current consumption
- Typical and maximum current consumption
- 5.3.8 Wakeup time from low-power modes and voltage scaling transition times
- 5.3.9 External clock source characteristics
- 5.3.10 Internal clock source characteristics
- 5.3.11 PLL characteristics
- 5.3.12 Flash memory characteristics
- 5.3.13 EMC characteristics
- 5.3.14 Electrical sensitivity characteristics
- 5.3.15 I/O current injection characteristics
- 5.3.16 I/O port characteristics
- 5.3.17 NRST pin characteristics
- 5.3.18 Analog switches booster
- 5.3.19 Analog-to-digital converter characteristics
- 5.3.20 Temperature sensor characteristics
- 5.3.21 VBAT monitoring characteristics
- 5.3.22 Voltage reference buffer characteristics
- 5.3.23 Digital-to-analog converter characteristics
- 5.3.24 Comparator characteristics
- 5.3.25 Timers characteristics
- 5.3.26 Communication interfaces characteristics
- 6 Package information
- 6.1 UFBGA73 package information
- Figure 26. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array package outline
- Table 90. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array mechanical data
- Figure 27. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array recommended footprint
- Table 91. UFBGA recommended PCB design rules (0.5 mm pitch BGA)
- Device marking for UFBGA73
- 6.2 Package thermal characteristics
- 6.1 UFBGA73 package information
- 7 Ordering information
- 8 Revision history
DS13105 Rev 4 129/135
STM32WLE5J8/JB/JC Package information
132
Table 90. UFBGA - 73 balls, 5 × 5 mm, ultra thin fine pitch ball grid array
mechanical data
Symbol
millimeters inches
(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A
(2)
2. - UFBGA stands for Ultra-Thin Profile Fine Pitch Ball Grid Array.
- Ultra Thin profile: 0.50 < A 0.65mm / Fine pitch: e < 1.00mm pitch.
- The total profile height (Dim A) is measured from the seating plane to the top of the component
- The maximum total package height is calculated by the following methodology:
A Max = A1 Typ + A2 Typ + A4 Typ + (A1²+A2²+A4² tolerance values)
- - 0.60 - - 0.236
A1 - - 0.11 - - 0.0043
A2 - 0.13 - - 0.0051 -
A4 - 0.32 - - 0.0126 -
b
(3)
3. The typical balls diameters before mounting is 0.20 mm.
0.24 0.29 0.34 0.0094 0.0114 0.0134
D 4.85 5.00 5.15 0.1909 0.1969 0.2028
D1 - 4.00 - - 0.1575 -
E 4.85 5.00 5.15 0.1909 0.1969 0.2028
E1 - 4.00 - - 0.1575 -
e - 0.50 - - 0.0197 -
F - 0.50 - - 0.0197 -
ddd - - 0.08 - - 0.0031
eee
(4)
4. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B. For
each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true position
with respect to datum A and B as defined by e. The axis perpendicular to datum C of each ball must lie
within this tolerance zone.
- - 0.15 - - 0.0059
fff
(5)
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each
tolerance zone fff in the array is contained entirely in the respective zone eee above. The axis of each ball
must lie simultaneously in both tolerance zones.
- - 0.05 - - 0.0020