Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
217 interp_set_config(interp0, 0, &cfg);
218
219 interp_config_shift(&cfg, uv_fractional_bits - texture_width_bits);
220 interp_config_mask(&cfg, texture_width_bits, texture_width_bits + texture_height_bits -
Ê 1);
221 interp_set_config(interp0, 1, &cfg);
222
223 interp0->base[2] = (uintptr_t) texture;
224 }
225
226 void texture_mapped_span(uint8_t *output, uint32_t u, uint32_t v, uint32_t du, uint32_t dv,
Ê uint count) {
227 // u, v are texture coordinates in fixed point with uv_fractional_bits fractional bits
228 // du, dv are texture coordinate steps across the span in same fixed point.
229 interp0->accum[0] = u;
230 interp0->base[0] = du;
231 interp0->accum[1] = v;
232 interp0->base[1] = dv;
233 for (uint i = 0; i < count; i++) {
234 // equivalent to
235 // uint32_t sm_result0 = (accum0 >> uv_fractional_bits) & (1 << (texture_width_bits -
Ê 1);
236 // uint32_t sm_result1 = (accum1 >> uv_fractional_bits) & (1 << (texture_height_bits
Ê - 1);
237 // uint8_t *address = texture + sm_result0 + (sm_result1 << texture_width_bits);
238 // output[i] = *address;
239 // accum0 = du + accum0;
240 // accum1 = dv + accum1;
241
242 // result2 is the texture address for the current pixel;
243 // popping the result advances to the next iteration
244 output[i] = *(uint8_t *) interp0->pop[2];
245 }
246 }
247
248 void texture_mapping() {
249 puts("Affine Texture mapping (with texture wrap):");
250
251 uint8_t texture[] = {
252 0x00, 0x01, 0x02, 0x03,
253 0x10, 0x11, 0x12, 0x13,
254 0x20, 0x21, 0x22, 0x23,
255 0x30, 0x31, 0x32, 0x33,
256 };
257 // 4x4 texture
258 texture_mapping_setup(texture, 2, 2, 16);
259 uint8_t output[12];
260 uint32_t du = 65536 / 2; // step of 1/2
261 uint32_t dv = 65536 / 3; // step of 1/3
262 texture_mapped_span(output, 0, 0, du, dv, 12);
263
264 for (uint i = 0; i < 12; i++) {
265 printf("0x%02x\n", output[i]);
266 }
267 }
This should print:
0x00
0x00
0x01
RP2040 Datasheet
2.3. Processor subsystem 45