Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
Bits Name Description Type Reset
0 FE Framing error. When set to 1, it indicates that the received
character did not have a valid stop bit (a valid stop bit is 1).
This bit is cleared to 0 by a write to UARTECR. In FIFO
mode, this error is associated with the character at the top
of the FIFO.
WC 0x0
UARTFR Register
Description
Flag Register, UARTFR
Table 456. UARTFR
Register
Bits Name Description Type Reset
31:9 Reserved. - - -
8 RI Ring indicator. This bit is the complement of the UART ring
indicator, nUARTRI, modem status input. That is, the bit is 1
when nUARTRI is LOW.
RO -
7 TXFE Transmit FIFO empty. The meaning of this bit depends on
the state of the FEN bit in the Line Control Register,
UARTLCR_H. If the FIFO is disabled, this bit is set when the
transmit holding register is empty. If the FIFO is enabled,
the TXFE bit is set when the transmit FIFO is empty. This
bit does not indicate if there is data in the transmit shift
register.
RO 0x1
6 RXFF Receive FIFO full. The meaning of this bit depends on the
state of the FEN bit in the UARTLCR_H Register. If the FIFO
is disabled, this bit is set when the receive holding register
is full. If the FIFO is enabled, the RXFF bit is set when the
receive FIFO is full.
RO 0x0
5 TXFF Transmit FIFO full. The meaning of this bit depends on the
state of the FEN bit in the UARTLCR_H Register. If the FIFO
is disabled, this bit is set when the transmit holding register
is full. If the FIFO is enabled, the TXFF bit is set when the
transmit FIFO is full.
RO 0x0
4 RXFE Receive FIFO empty. The meaning of this bit depends on
the state of the FEN bit in the UARTLCR_H Register. If the
FIFO is disabled, this bit is set when the receive holding
register is empty. If the FIFO is enabled, the RXFE bit is set
when the receive FIFO is empty.
RO 0x1
3 BUSY UART busy. If this bit is set to 1, the UART is busy
transmitting data. This bit remains set until the complete
byte, including all the stop bits, has been sent from the shift
register. This bit is set as soon as the transmit FIFO
becomes non-empty, regardless of whether the UART is
enabled or not.
RO 0x0
2 DCD Data carrier detect. This bit is the complement of the UART
data carrier detect, nUARTDCD, modem status input. That
is, the bit is 1 when nUARTDCD is LOW.
RO -
RP2040 Datasheet
4.3. UART 453