Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/pre_release/interp/hello_interp/hello_interp.c Lines 121 - 142
121 void simple_blend3() {
122 puts("Simple blend 3:");
123
124 interp_config cfg = interp_default_config();
125 interp_config_blend(&cfg, true);
126 interp_set_config(interp0, 0, &cfg);
127
128 cfg = interp_default_config();
129 interp_set_config(interp0, 1, &cfg);
130
131 interp0->accum[1] = 128;
132 interp0->base01 = 0x30005000;
133 printf("0x%08x\n", (int) interp0->peek[1]);
134 interp0->base01 = 0xe000f000;
135 printf("0x%08x\n", (int) interp0->peek[1]);
136
137 interp_config_signed(&cfg, true);
138 interp_set_config(interp0, 1, &cfg);
139
140 interp0->base01 = 0xe000f000;
141 printf("0x%08x\n", (int) interp0->peek[1]);
142 }
This should print:
0x00004000
0x0000e800
0xffffe800
2.3.1.6.3. Clamp Mode
Clamp mode is available on INTERP1 on each core, and is enabled by the CTRL_LANE0_CLAMP control flag. In clamp mode, the
PEEK0/POP0 result is the lane value (shifted, masked, sign-extended ACCUM0) clamped between BASE0 and BASE1. In other
words, if the lane value is greater than BASE1, a value of BASE1 is produced; if less than BASE0, a value of BASE0 is produced;
otherwise, the value passes through. No addition is performed. The signedness of these comparisons is controlled by the
CTRL_LANE0_SIGNED flag.
Other than this, the interpolator behaves the same as in normal mode.
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/pre_release/interp/hello_interp/hello_interp.c Lines 188 - 206
188 void clamp() {
189 puts("Clamp:");
190 interp_config cfg = interp_default_config();
191 interp_config_clamp(&cfg, true);
192 interp_config_shift(&cfg, 2);
193 // set mask according to new position of sign bit..
194 interp_config_mask(&cfg, 0, 29);
195 // ...so that the shifted value is correctly sign extended
196 interp_config_signed(&cfg, true);
197 interp_set_config(interp1, 0, &cfg);
198
199 interp1->base[0] = 0;
200 interp1->base[1] = 255;
201
202 for (int i = -1024; i <= 1024; i += 256) {
RP2040 Datasheet
2.3. Processor subsystem 42