Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
3.6.5. Manchester Serial TX and RX
Data Idle 0 0 1 1 0 1
Line
Figure 51. Manchester
serial line code. Each
data bit is represented
by either a high pulse
followed by a low
pulse (representing a
'0' bit) or a low pulse
followed by a high
pulse (a '1' bit).
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/pre_release/pio/manchester_encoding/manchester_encoding.pio Lines 7 - 29
Ê7 .program manchester_tx
Ê8 .side_set 1 opt
Ê9
10 ; Transmit one bit every 12 cycles. a '0' is encoded as a high-low sequence
11 ; (each part lasting half a bit period, or 6 cycles) and a '1' is encoded as a
12 ; low-high sequence.
13 ;
14 ; Side-set bit 0 must be mapped to the GPIO used for TX.
15 ; Autopull must be enabled -- this program does not care about the threshold.
16 ; The program starts at the public label 'start'.
17
18 .wrap_target
19 do_1:
20 nop side 0 [5] ; Low for 6 cycles (5 delay, +1 for nop)
21 jmp get_bit side 1 [3] ; High for 4 cycles. 'get_bit' takes another 2 cycles
22 do_0:
23 nop side 1 [5] ; Output high for 6 cycles
24 nop side 0 [3] ; Output low for 4 cycles
25 public start:
26 get_bit:
27 out x, 1 ; Always shift out one bit from OSR to X, so we can
28 jmp !x do_0 ; branch on it. Autopull refills the OSR when empty.
29 .wrap
Starting from the label called start, this program shifts one data bit at a time into the X register, so that it can branch on
the value. Depending on the outcome, it uses side-set to drive either a 1-0 or 0-1 sequence onto the chosen GPIO. This
program uses autopull (Section 3.5.4.2) to automatically replenish the OSR from the TX FIFO once a certain amount of
data has been shifted out, without interrupting program control flow or timing. This feature is enabled by a helper function
in the .pio file which configures and starts the state machine:
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/pre_release/pio/manchester_encoding/manchester_encoding.pio Lines 32 - 45
32 static inline void manchester_tx_program_init(PIO pio, uint sm, uint offset, uint pin, float
Ê div) {
33 pio_sm_set_pins_with_mask(pio, sm, 0, 1u << pin);
34 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
35 pio_gpio_select(pio, pin);
36
37 pio_sm_config c = manchester_tx_program_get_default_config(offset);
38 sm_config_set_sideset_pins(&c, pin);
39 sm_config_set_out_shift(&c, true, true, 32);
40 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
41 sm_config_set_clkdiv(&c, div);
42 pio_sm_init(pio, sm, offset + manchester_tx_offset_start, &c);
43
44 pio_sm_enable(pio, sm, true);
45 }
Another state machine can be programmed to recover the original data from the transmitted signal:
RP2040 Datasheet
3.6. Examples 355