Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
60 const int PIN_TX = 0;
61
62 int main()
63 {
64 tb_init();
65
66 puts("WS2812 Smoke Test");
67
68 pio_sm_init(pio0, 0);
69 pio_load_program_arr(pio0, ws2812_program, 0);
70 pio_setup_shiftctrl(pio0, 0, SHIFT_TO_RIGHT, SHIFT_TO_LEFT, false, true, 32, 24);
71 pio_set_clkdiv_int_frac(pio0, 0, 5, 0);
72 pio_setup_pinctrl(pio0, 0, 0, 0, 0, 0, PIN_TX, 0);
73 pio_setup_sideset(pio0, 0, 1, false, false);
74 pio_set_wrap(pio0, 0, ws2812_wrap_target, ws2812_wrap);
75 pio_sm_enable(pio0, 0, true);
76
77 pio_set_pindirs_with_mask(pio0, 0, 1u << PIN_TX, 1u << PIN_TX);
78 gpio_set_function(PIN_TX, GPIO_FUNC_PIO0);
79
80 int t = 0;
81
82 while (1)
83 {
84 int pat = rand() % count_of(pattern_table);
85 int dir = (rand() >> 30) & 1 ? 1 : -1;
86 puts(pattern_table[pat].name);
87 puts(dir == 1 ? "(forward)" : "(backward)");
88 for (int i = 0; i < 1000; ++i)
89 {
90 pattern_table[pat].pat(150, t);
91 sleep_ms(10);
92 t += dir;
93 button_prev = button;
94 button = gpio_get(PIN_BUTTON);
95 }
96 }
97
98 return tb_exit(0);
99 }
A C program configures the state machine to execute this program correctly, and sends some test patterns to a string of
150 LEDs. This program transmits on GPIO 0, but any pin can be selected, by changing the constant PIN_TX.
The state machine’s clock divider is configured to slow execution to around 10 MIPS. If system clock speed is 120 MHz,
this is a clock divisor of 12.
Note it is possible to make this program as short as 3 instructions, at the cost of making transmission time dependent on
data content:
1 .program ws2812_mini
2 .side_set 1
3
4 .wrap_target
5 bitloop:
6 out x, 1 [5] set 0
7 jmp !x bitloop [2] set 1
8 nop [3] set 1
9 .wrap
RP2040 Datasheet
3.6. Examples 349