Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
NOTE
These programs do not control the chip select line; chip select is often implemented as a software-controlled GPIO,
due to wildly different behaviour between different SPI hardware. The full spi.pio source linked above contains some
examples how PIO can implement a hardware chip select line.
A C helper function configures the state machine, connects the GPIOs, and sets the state machine running. Note that the
SPI frame size — that is, the number of bits transferred for each FIFO record — can be programmed to any value from 1 to
32, without modifying the program. Once configured, the state machine is set running.
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/pre_release/pio/spi/spi.pio Lines 46 - 72
46 static inline void pio_spi_init(PIO pio, uint sm, uint prog_offs, uint n_bits,
47 float clkdiv, bool cpha, bool cpol, uint pin_sck, uint pin_mosi, uint pin_miso) {
48 pio_sm_config c = cpha ? spi_cpha1_program_get_default_config(prog_offs) :
Ê spi_cpha0_program_get_default_config(prog_offs);
49 sm_config_set_out_pins(&c, pin_mosi, 1);
50 sm_config_set_in_pins(&c, pin_miso);
51 sm_config_set_sideset_pins(&c, pin_sck);
52 // Only support MSB-first in this example code (shift to left, auto push/pull,
Ê threshold=nbits)
53 sm_config_set_out_shift(&c, false, true, n_bits);
54 sm_config_set_in_shift(&c, false, true, n_bits);
55 sm_config_set_clkdiv(&c, clkdiv);
56
57 // MOSI, SCK output are low, MISO is input
58 pio_sm_set_pins_with_mask(pio, sm, 0, (1u << pin_sck) | (1u << pin_mosi));
59 pio_sm_set_pindirs_with_mask(pio, sm, (1u << pin_sck) | (1u << pin_mosi), (1u <<
Ê pin_sck) | (1u << pin_mosi) | (1u << pin_miso));
60 pio_gpio_select(pio, pin_mosi);
61 pio_gpio_select(pio, pin_miso);
62 pio_gpio_select(pio, pin_sck);
63
64 // The pin muxes can be configured to invert the output (among other things,
65 // thank you Terry) and this is a cheesy way to get CPOL=1
66 gpio_set_outover(pin_sck, cpol ? GPIO_OVERRIDE_INVERT : GPIO_OVERRIDE_NORMAL);
67 // SPI is synchronous, so bypass input synchroniser to reduce input delay.
68 hw_set_bits(&pio->input_sync_bypass, 1u << pin_miso);
69
70 pio_sm_init(pio, sm, prog_offs, &c);
71 pio_sm_enable(pio, sm, true);
72 }
The state machine will now immediately begin to shift out any data appearing in the TX FIFO, and push received data into
the RX FIFO.
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/pre_release/pio/spi/pio_spi.c Lines 18 - 34
18 void __time_critical_func(pio_spi_write8_blocking)(const pio_spi_inst_t *spi, const uint8_t
Ê *src, size_t len) {
19 size_t tx_remain = len, rx_remain = len;
20 // Do 8 bit accesses on FIFO, so that write data is byte-replicated. This
21 // gets us the left-justification for free (for MSB-first shift-out)
22 io_rw_8 *txfifo = (io_rw_8 *) &spi->pio->txf[spi->sm];
23 io_rw_8 *rxfifo = (io_rw_8 *) &spi->pio->rxf[spi->sm];
24 while (tx_remain || rx_remain) {
25 if (tx_remain && !pio_sm_is_tx_full(spi->pio, spi->sm)) {
26 *txfifo = *src++;
27 --tx_remain;
RP2040 Datasheet
3.6. Examples 345