Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
Pico SDK: https://github.com/raspberrypi/pico-sdk/tree/pre_release/src/rp2040/hardware_structs/include/hardware/structs/clocks.h Lines 34 - 38
34 typedef struct {
35 io_rw_32 ctrl;
36 io_rw_32 div;
37 io_rw_32 selected;
38 } clock_hw_t;
To configure a clock, we need to know the following pieces of information:
•
The frequency of the clock source
•
The mux / aux mux position of the clock source
•
The desired output frequency
The Pico SDK provides clock_configure to configure a clock:
Pico SDK: https://github.com/raspberrypi/pico-sdk/tree/pre_release/src/rp2_common/hardware_clocks/clocks.c Lines 39 - 110
Ê39 int clock_configure(enum clock_index clk_index, uint32_t src, uint32_t auxsrc, uint32_t
Ê src_freq, uint32_t freq) {
Ê40 uint32_t div;
Ê41
Ê42 assert(src_freq >= freq);
Ê43
Ê44 if (freq > src_freq)
Ê45 return -1;
Ê46
Ê47 // Div register is 24.8 int.frac divider so multiply by 2^8 (left shift by 8)
Ê48 div = (uint32_t) (((uint64_t) src_freq << 8) / freq);
Ê49
Ê50 clock_hw_t *clock = &clocks_hw->clk[clk_index];
Ê51
Ê52 // If increasing divisor, set divisor before source. Otherwise set source
Ê53 // before divisor. This avoids a momentary overspeed when e.g. switching
Ê54 // to a faster source and increasing divisor to compensate.
Ê55 if (div > clock->div)
Ê56 clock->div = div;
Ê57
Ê58 // If switching a glitchless slice (ref or sys) to an aux source, switch
Ê59 // away from aux *first* to avoid passing glitches when changing aux mux.
Ê60 // Assume (!!!) glitchless source 0 is no faster than the aux source.
Ê61 if (has_glitchless_mux(clk_index) && src ==
Ê CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX) {
Ê62 hw_clear_bits(&clock->ctrl, CLOCKS_CLK_REF_CTRL_SRC_BITS);
Ê63 while (!(clock->selected & 1u))
Ê64 tight_loop_contents();
Ê65 }
Ê66 // If no glitchless mux, cleanly stop the clock to avoid glitches
Ê67 // propagating when changing aux mux. Note it would be a really bad idea
Ê68 // to do this on one of the glitchless clocks (clk_sys, clk_ref).
Ê69 else {
Ê70 hw_clear_bits(&clock->ctrl, CLOCKS_CLK_GPOUT0_CTRL_ENABLE_BITS);
Ê71 if (configured_freq[clk_index] > 0) {
Ê72 // Delay for 3 cycles of the target clock, for ENABLE propagation.
Ê73 // Note XOSC_COUNT is not helpful here because XOSC is not
Ê74 // necessarily running, nor is timer... so, 3 cycles per loop:
Ê75 uint delay_cyc = configured_freq[clk_sys] / configured_freq[clk_index] + 1;
Ê76 asm volatile (
Ê77 "1: \n\t"
Ê78 "sub %0, #1 \n\t"
Ê79 "bne 1b"
RP2040 Datasheet
2.14. Clocks 169