Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
either a power-on or brown-out initiated reset, a one in the HAD_RUN field indicates the chip was last reset by the RUN pin,
and a one in the HAD_PSM_RESTART field indicates the chip has been reset via Rescue Debug Port. There should never be
more than one field set to one.
2.11.8. List of Registers
The chip-level reset subsystem shares a register address space with the on-chip voltage regulator. The registers for both
subsystems are listed in Section 2.9.6. The shared address space is referred to as vreg_and_chip_reset elsewhere in this
document.
2.12. Power-On State Machine
2.12.1. Overview
The power-on state machine is responsible for removing the reset from various hardware blocks in a specific order. Each
peripheral in the power-on state machine is controlled by a rst_n active-low reset signal and generates a rst_done active-
high reset done signal. The power-on state machine deasserts the reset to each peripheral, waits for that peripheral to
assert its rst_done and then deasserts the reset to the next peripheral. An important use of this is to wait for a clock
source to be running cleanly in the chip before the reset to the clock generators is deasserted. This avoids potentially
glitchy clocks being distributed to the chip.
The power-on state machine is itself taken out of reset when the Chip-Level Reset subsystem confirms that the digital
core supply (DVDD) is powered and stable, and the RUN pin is high. The power-on state machine takes a number of other
blocks out of reset at this point via its rst_n_run output. This is used to reset things that need to be reset at start-up but
must not be reset if the power-on state machine is restarted. This list includes:
•
Power on logic in the ring oscillator and crystal oscillator
•
Clock dividers which must keep on running during a power-on state machine restart (clk_ref and clk_sys)
•
Watchdog (contains scratch registers which need to persist through a soft-restart of the power-on state machine)
TO DO: JACK Diagram needs changing to remove Crystal Oscillator box- See JIRA PICODOC-168
2.12.2. Power On Sequence
Chip Level Reset
Released
Clock GeneratorsRing Oscillator
XIP
(Execute-In-Place)
ROM / SRAM Bus Fabric
Crystal Oscillator Reset Controller
Chip Level Reset
and Voltage
Regulator Registers
Processor Complex
Figure 25. Power-On
State Machine
Sequence.
The power-on state machine sequence is as follows:
•
Chip-Level Reset subsystem deasserts power-on state machine reset once digital core supply (DVDD) is powered
and stable, and RUN pin is high (rst_n_run is also deasserted at this point)
RP2040 Datasheet
2.12. Power-On State Machine 152