Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
0x10 N/A N/A deprecated
Do not use this function
0x14 N/A N/A deprecated
Do not use this function
0x18 63 63 float _fsqrt(float v)
Return or -Infinity if v is negative. (Note V1 returns +Infinity in this case)
0x1c 37 40 int _float2int(float v)
Convert a float to a signed integer, rounding towards -Infinity, and clamping the
result to lie within the range -0x80000000 to 0x7FFFFFFF
0x20 36 39 int _float2fix(float v, int n)
Convert a float to a signed fixed point integer representation where n specifies the
position of the binary point in the resulting fixed point representation - e.g.
_float2fix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps
the resulting integer to lie within the range -0x80000000 to 0x7FFFFFFF
0x24 38 39 uint _float2uint(float v)
Convert a float to an unsigned integer, rounding towards -Infinity, and clamping the
result to lie within the range 0x00000000 to 0xFFFFFFFF
0x28 38 38 uint _float2ufix(float v, int n)
Convert a float to an unsigned fixed point integer representation where n specifies
the position of the binary point in the resulting fixed point representation, e.g.
_float2ufix(0.5f, 16) == 0x8000. This method rounds towards -Infinity, and clamps
the resulting integer to lie within the range 0x00000000 to 0xFFFFFFFF
0x2c 55 55 float _int2float(int v)
Convert a signed integer to the nearest float value, rounding to even on tie
0x30 53 53 float _fix2float(int32_t v, int n)
Convert a signed fixed point integer representation to the nearest float value,
rounding to even on tie. n specifies the position of the binary point in fixed point, so
0x34 54 54 float _uint2float(uint32_t v)
Convert an unsigned integer to the nearest float value, rounding to even on tie
0x38 52 52 float _ufix2float(uint32_t v, int n)
Convert an unsigned fixed point integer representation to the nearest float value,
rounding to even on tie. n specifies the position of the binary point in fixed point, so
0x3c 603 587 float _fcos(float angle)
Return the cosine of angle. angle is in radians, and must be in the range -128 to 128
0x40 593 577 float _fsin(float angle)
Return the sine of angle. angle is in radians, and must be in the range -128 to 128
RP2040 Datasheet
2.7. Bootrom 122