Datasheet
Table Of Contents
- RP2040 Datasheet
- Colophon
- Chapter 1. Introduction
- Chapter 2. System Description
- 2.1. Bus Fabric
- 2.2. Address Map
- 2.3. Processor subsystem
- 2.4. Cortex-M0+
- 2.4.1. Features
- 2.4.2. Functional Description
- 2.4.3. Programmer’s model
- 2.4.4. System control
- 2.4.5. NVIC
- 2.4.6. MPU
- 2.4.7. Debug
- 2.4.8. List of Registers
- 2.5. Memory
- 2.6. Boot Sequence
- 2.7. Bootrom
- 2.7.1. Bootrom Source
- 2.7.2. Processor Controlled Boot Sequence
- 2.7.3. Bootrom Contents
- 2.7.4. USB Mass Storage Interface
- 2.7.5. USB PICOBOOT Interface
- 2.8. Power Supplies
- 2.9. On-Chip Voltage Regulator
- 2.10. Power Control
- 2.11. Chip-Level Reset
- 2.12. Power-On State Machine
- 2.13. Subsystem Resets
- 2.14. Clocks
- 2.14.1. Overview
- 2.14.2. Clock sources
- 2.14.2.1. Ring Oscillator
- 2.14.2.1.1. Mitigating ROSC frequency variation due to process
- 2.14.2.1.2. Mitigating ROSC frequency variation due to voltage
- 2.14.2.1.3. Mitigating ROSC frequency variation due to temperature
- 2.14.2.1.4. Automatic mitigation of ROSC frequency variation due to PVT
- 2.14.2.1.5. Automatic overclocking using the ROSC
- 2.14.2.2. Crystal Oscillator
- 2.14.2.3. External Clocks
- 2.14.2.4. Relaxation Oscillators
- 2.14.2.5. PLLs
- 2.14.2.1. Ring Oscillator
- 2.14.3. Clock Generators
- 2.14.4. Frequency Counter
- 2.14.5. Resus
- 2.14.6. Programmer’s Model
- 2.14.7. List of registers
- 2.15. Crystal Oscillator (XOSC)
- 2.16. Ring Oscillator (ROSC)
- 2.17. PLL
- 2.18. GPIO
- 2.19. Sysinfo
- 2.20. Syscfg
- Chapter 3. PIO
- Chapter 4. Peripherals
- 4.1. USB
- 4.2. DMA
- 4.3. UART
- 4.4. I2C
- 4.4.1. Features
- 4.4.2. IP Configuration
- 4.4.3. I2C Overview
- 4.4.4. I2C Terminology
- 4.4.5. I2C Behaviour
- 4.4.6. I2C Protocols
- 4.4.7. Tx FIFO Management and START, STOP and RESTART Generation
- 4.4.8. Multiple Master Arbitration
- 4.4.9. Clock Synchronization
- 4.4.10. Operation Modes
- 4.4.11. Spike Suppression
- 4.4.12. Fast Mode Plus Operation
- 4.4.13. Bus Clear Feature
- 4.4.14. IC_CLK Frequency Configuration
- 4.4.15. DMA Controller Interface
- 4.4.16. List of Registers
- 4.5. SPI
- 4.5.1. Overview
- 4.5.2. Functional Description
- 4.5.3. Operation
- 4.5.3.1. Interface reset
- 4.5.3.2. Configuring the SSP
- 4.5.3.3. Enable PrimeCell SSP operation
- 4.5.3.4. Clock ratios
- 4.5.3.5. Programming the SSPCR0 Control Register
- 4.5.3.6. Programming the SSPCR1 Control Register
- 4.5.3.7. Frame format
- 4.5.3.8. Texas Instruments synchronous serial frame format
- 4.5.3.9. Motorola SPI frame format
- 4.5.3.10. Motorola SPI Format with SPO=0, SPH=0
- 4.5.3.11. Motorola SPI Format with SPO=0, SPH=1
- 4.5.3.12. Motorola SPI Format with SPO=1, SPH=0
- 4.5.3.13. Motorola SPI Format with SPO=1, SPH=1
- 4.5.3.14. National Semiconductor Microwire frame format
- 4.5.3.15. Examples of master and slave configurations
- 4.5.3.16. PrimeCell DMA interface
- 4.5.4. List of Registers
- 4.6. PWM
- 4.7. Timer
- 4.8. Watchdog
- 4.9. RTC
- 4.10. ADC and Temperature Sensor
- 4.11. SSI
- 4.11.1. Overview
- 4.11.2. Features
- 4.11.3. IP Modifications
- 4.11.4. Clock Ratios
- 4.11.5. Transmit and Receive FIFO Buffers
- 4.11.6. 32-Bit Frame Size Support
- 4.11.7. SSI Interrupts
- 4.11.8. Transfer Modes
- 4.11.9. Operation Modes
- 4.11.10. Partner Connection Interfaces
- 4.11.11. DMA Controller Interface
- 4.11.12. APB Interface
- 4.11.13. List of Registers
- Chapter 5. Electrical and Mechanical
- Appendix A: Register Field Types
- Appendix B: Errata
0x00000016
16 bit pointer
Pointer to a public data lookup table (rom_data_table)
0x00000018
16 bit pointer
Pointer to a helper function (rom_table_lookup())
2.7.3.1. Bootrom Functions
The Bootrom contains a number of public functions that provide useful RP2040 functionality that might be needed in the
absence of any other code on the device, as well as highly optimized versions of certain key functionality that would
otherwise have to take up space in most user binaries.
These functions are normally made available to the user by the Pico SDK, however a lower level method is provided to
locate them (their locations may change with each Bootrom release) and call them directly.
Assuming the three bytes starting at address 0x00000010 are ('M', 'u', 0x01) then the three halfwords starting at offset
0x00000014 are valid.
These three values can be used to dynamically locate other functions or data within the Bootrom. The version byte at
offset 0x00000013 is informational and should not be used to infer the exact location of any functions.
The following code from the Pico SDK shows how the three 16-bit pointers are used to lookup other functions or data.
Pico SDK: https://github.com/raspberrypi/pico-sdk/tree/pre_release/src/rp2_common/pico_bootrom/bootrom.c Lines 10 - 28
10 // Bootrom function: rom_table_lookup
11 // Returns the 32 bit pointer into the ROM if found or NULL otherwise.
12 typedef void *(*rom_table_lookup_fn)(uint16_t *table, uint32_t code);
13
14 // Convert a 16 bit pointer stored at the given rom address into a 32 bit pointer
15 #define rom_hword_as_ptr(rom_address) (void *)(uintptr_t)(*(uint16_t *)rom_address)
16
17 void *rom_func_lookup(uint32_t code) {
18 rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn) rom_hword_as_ptr(0x18);
19 uint16_t *func_table = (uint16_t *) rom_hword_as_ptr(0x14);
20 return rom_table_lookup(func_table, code);
21 }
22
23 void *rom_data_lookup(uint32_t code) {
24 rom_table_lookup_fn rom_table_lookup = (rom_table_lookup_fn) rom_hword_as_ptr(0x18);
25 uint16_t *data_table = (uint16_t *) rom_hword_as_ptr(0x16);
26 return rom_table_lookup(data_table, code);
27 }
The code parameter correspond to the CODE values in the tables below, and is calculated as follows:
uint32_t rom_table_code(char c1, char c2) {
Ê return (c2 << 8) | c1;
}
2.7.3.1.1. Fast Bit Counting / Manipulation Functions
These are optimized versions of common bit counting / manipulation functions.
In general you do not need to call these methods directly as the Pico SDK pico_aeabi_bits library replaces the
corresponding standard compiler library functions by default so that the standard functions such as __builtin_popcount or
__clzdi2 uses the corresponding Bootrom implementations automatically (see pico_bit_ops for more details).
These functions have changed in speed slightly between version 1 (V1) of the bootrom and version 2 (v2) .Fast Bit
RP2040 Datasheet
2.7. Bootrom 117