Datasheet
Table Of Contents
- Notes regarding these materials
- General Precautions in the Handling of MPU/MCU Products
- How to Use This Manual
- Table of Contents
- Quick Reference by Address B-
- 1. Overview
- 2. Central Processing Unit (CPU)
- 2.1 Data Registers (R0, R1, R2 and R3)
- 2.2 Address Registers (A0 and A1)
- 2.3 Frame Base Register (FB)
- 2.4 Interrupt Table Register (INTB)
- 2.5 Program Counter (PC)
- 2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
- 2.7 Static Base Register (SB)
- 2.8 Flag Register (FLG)
- 2.8.1 Carry Flag (C Flag)
- 2.8.2 Debug Flag (D Flag)
- 2.8.3 Zero Flag (Z Flag)
- 2.8.4 Sign Flag (S Flag)
- 2.8.5 Register Bank Select Flag (B Flag)
- 2.8.6 Overflow Flag (O Flag)
- 2.8.7 Interrupt Enable Flag (I Flag)
- 2.8.8 Stack Pointer Select Flag (U Flag)
- 2.8.9 Processor Interrupt Priority Level (IPL)
- 2.8.10 Reserved Area
- 3. Memory
- 4. Special Function Registers (SFRs)
- 5. Reset
- 6. Processor Mode
- 7. Clock Generation Circuit
- 8. Protection
- 9. Interrupt
- 10. Watchdog Timer
- 11. DMAC
- 12. Timer
- 13. Serial I/O
- 14. A/D Converter
- 15. CRC Calculation Circuit
- 16. Programmable I/O Ports
- 16.1 Port Pi Direction Register (PDi Register, i = 1, 6 to 10)
- 16.2 Port Pi Register (Pi Register, i = 1, 6 to 10)
- 16.3 Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers)
- 16.4 Port Control Register
- 16.5 Pin Assignment Control register (PACR)
- 16.6 Digital Debounce function
- 17. Flash Memory Version
- 17.1 Flash Memory Performance
- 17.2 Memory Map
- 17.3 Functions To Prevent Flash Memory from Rewriting
- 17.4 CPU Rewrite Mode
- 17.5 Register Description
- 17.6 Precautions in CPU Rewrite Mode
- 17.6.1 Operation Speed
- 17.6.2 Prohibited Instructions
- 17.6.3 Interrupts
- 17.6.4 How to Access
- 17.6.5 Writing in the User ROM Space
- 17.6.6 DMA Transfer
- 17.6.7 Writing Command and Data
- 17.6.8 Wait Mode
- 17.6.9 Stop Mode
- 17.6.10 Low Power Consumption Mode and On-chip Oscillator-Low Power Consumption Mode
- 17.7 Software Commands
- 17.8 Status Register
- 17.9 Standard Serial I/O Mode
- 17.10 Parallel I/O Mode
- 18. Electrical Characteristics
- 19. Usage Notes
- 19.1 SFR
- 19.2 PLL Frequency Synthesizer
- 19.3 Power Control
- 19.4 Protect
- 19.5 Interrupts
- 19.6 DMAC
- 19.7 Timer
- 19.8 Serial I/O
- 19.9 A/D Converter
- 19.10 Programmable I/O Ports
- 19.11 Electric Characteristic Differences Between Mask ROM
- 19.12 Mask ROM Version
- 19.13 Flash Memory Version
- 19.13.1 Functions to Inhibit Rewriting Flash Memory
- 19.13.2 Stop mode
- 19.13.3 Wait mode
- 19.13.4 Low power dissipation mode, on-chip oscillator low power dissipation mode
- 19.13.5 Writing command and data
- 19.13.6 Program Command
- 19.13.7 Operation speed
- 19.13.8 Instructions prohibited in EW0 Mode
- 19.13.9 Interrupts
- 19.13.10 How to access
- 19.13.11 Writing in the user ROM area
- 19.13.12 DMA transfer
- 19.13.13 Regarding Programming/Erasure Times and Execution Time
- 19.13.14 Definition of Programming/Erasure Times
- 19.13.15 Flash Memory Version Electrical Characteristics 10,000 E/W cycle product
- 19.13.16 Boot Mode
- 19.14 Noise
- 19.15 Instruction for a Device Use
- Appendix 1. Package Dimensions
- Appendix 2. Functional Difference
- Register Index
- REVISION HISTORY

page 309
19. Usage Notes
923fo7002,51.beF00.2.veR
0020-2020B90JER
)T62/C61M,B62/C61M,A62/C61M(puorGA62/C61M
19.7.1.3 Timer A (One-shot Timer Mode)
1. The timer remains idle after reset. Set the mode, count source, counter value, etc. using the TAiMR
(i = 0 to 4) register, the TAi register, the TA0TGL and TA0TGH bits in the ONSF register and the
TRGSR register before setting the TAiS bit in the TABSR register to “1” (count starts).
Always make sure the TAiMR register, the TA0TGL and TA0TGH bits and the TRGSR register are
modified while the TAiS bit remains “0” (count stops) regardless whether after reset or not.
2. When setting TAiS bit to “0” (count stop), the following occur:
• The counter stops counting and the content of reload register is reloaded.
• TAiOUT pin outputs “L”.
• After one cycle of the CPU clock, the IR bit in the TAiIC register is set to “1” (interrupt request).
3. Output in one-shot timer mode synchronizes with a count source internally generated. When the
external trigger has been selected, a maximun delay of one cycle of the count source occurs be-
tween the trigger input to TAiIN pin and output in one-shot timer mode.
4. The IR bit is set to “1” when timer operation mode is set with any of the following procedures:
• Select one-shot timer mode after reset.
• Change the operation mode from timer mode to one-shot timer mode.
• Change the operation mode from event counter mode to one-shot timer mode.
To use the timer Ai interrupt (the IR bit), set the IR bit to “0” after the changes listed above have
been made.
5. When a trigger occurs while the timer is counting, the counter reloads the reload register value, and
continues counting after a second trigger is generated and the counter is decremented once. To
generate a trigger while counting, space more than one cycle of the timer count source from the first
trigger and generate again.
6. When selecting the external trigger for the count start conditions in timer A one-shot timer mode, do
generate an external trigger 300ns before the count value of timer A is set to “000016”. The one-shot
timer does not continue counting and may stop.
_____
7. If a low-level signal is applied to the SD pin when the IVPCR1 bit in the TB2SC register is set to “1”
_____
(three-phase output forcible cutoff by input on SD pin enabled), the TA1OUT, TA2OUT and TA4OUT
pins go to a high-impedance state.