Datasheet
Table Of Contents
- Notes regarding these materials
- General Precautions in the Handling of MPU/MCU Products
- How to Use This Manual
- Table of Contents
- Quick Reference by Address B-
- 1. Overview
- 2. Central Processing Unit (CPU)
- 2.1 Data Registers (R0, R1, R2 and R3)
- 2.2 Address Registers (A0 and A1)
- 2.3 Frame Base Register (FB)
- 2.4 Interrupt Table Register (INTB)
- 2.5 Program Counter (PC)
- 2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
- 2.7 Static Base Register (SB)
- 2.8 Flag Register (FLG)
- 2.8.1 Carry Flag (C Flag)
- 2.8.2 Debug Flag (D Flag)
- 2.8.3 Zero Flag (Z Flag)
- 2.8.4 Sign Flag (S Flag)
- 2.8.5 Register Bank Select Flag (B Flag)
- 2.8.6 Overflow Flag (O Flag)
- 2.8.7 Interrupt Enable Flag (I Flag)
- 2.8.8 Stack Pointer Select Flag (U Flag)
- 2.8.9 Processor Interrupt Priority Level (IPL)
- 2.8.10 Reserved Area
- 3. Memory
- 4. Special Function Registers (SFRs)
- 5. Reset
- 6. Processor Mode
- 7. Clock Generation Circuit
- 8. Protection
- 9. Interrupt
- 10. Watchdog Timer
- 11. DMAC
- 12. Timer
- 13. Serial I/O
- 14. A/D Converter
- 15. CRC Calculation Circuit
- 16. Programmable I/O Ports
- 16.1 Port Pi Direction Register (PDi Register, i = 1, 6 to 10)
- 16.2 Port Pi Register (Pi Register, i = 1, 6 to 10)
- 16.3 Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers)
- 16.4 Port Control Register
- 16.5 Pin Assignment Control register (PACR)
- 16.6 Digital Debounce function
- 17. Flash Memory Version
- 17.1 Flash Memory Performance
- 17.2 Memory Map
- 17.3 Functions To Prevent Flash Memory from Rewriting
- 17.4 CPU Rewrite Mode
- 17.5 Register Description
- 17.6 Precautions in CPU Rewrite Mode
- 17.6.1 Operation Speed
- 17.6.2 Prohibited Instructions
- 17.6.3 Interrupts
- 17.6.4 How to Access
- 17.6.5 Writing in the User ROM Space
- 17.6.6 DMA Transfer
- 17.6.7 Writing Command and Data
- 17.6.8 Wait Mode
- 17.6.9 Stop Mode
- 17.6.10 Low Power Consumption Mode and On-chip Oscillator-Low Power Consumption Mode
- 17.7 Software Commands
- 17.8 Status Register
- 17.9 Standard Serial I/O Mode
- 17.10 Parallel I/O Mode
- 18. Electrical Characteristics
- 19. Usage Notes
- 19.1 SFR
- 19.2 PLL Frequency Synthesizer
- 19.3 Power Control
- 19.4 Protect
- 19.5 Interrupts
- 19.6 DMAC
- 19.7 Timer
- 19.8 Serial I/O
- 19.9 A/D Converter
- 19.10 Programmable I/O Ports
- 19.11 Electric Characteristic Differences Between Mask ROM
- 19.12 Mask ROM Version
- 19.13 Flash Memory Version
- 19.13.1 Functions to Inhibit Rewriting Flash Memory
- 19.13.2 Stop mode
- 19.13.3 Wait mode
- 19.13.4 Low power dissipation mode, on-chip oscillator low power dissipation mode
- 19.13.5 Writing command and data
- 19.13.6 Program Command
- 19.13.7 Operation speed
- 19.13.8 Instructions prohibited in EW0 Mode
- 19.13.9 Interrupts
- 19.13.10 How to access
- 19.13.11 Writing in the user ROM area
- 19.13.12 DMA transfer
- 19.13.13 Regarding Programming/Erasure Times and Execution Time
- 19.13.14 Definition of Programming/Erasure Times
- 19.13.15 Flash Memory Version Electrical Characteristics 10,000 E/W cycle product
- 19.13.16 Boot Mode
- 19.14 Noise
- 19.15 Instruction for a Device Use
- Appendix 1. Package Dimensions
- Appendix 2. Functional Difference
- Register Index
- REVISION HISTORY

13. Serial I/O
page 177
923fo7002,51.beF00.2.veR
0020-2020B90JER
)T62/C61M,B62/C61M,A62/C61M(puorGA62/C61M
Figure 13.1.6.1. Transmit and Receive Timing in SIM Mode
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST
P
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST
P
SP
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST
P
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST
P
SP
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST
P
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST
P
SP
SP
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST
P
D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7
ST
P
SP
SP
Start
bit
Parity
bit
"0"
"1"
"0"
"1"
"0"
"1"
Set to "0" by an interrupt request acknowledgement or by program
Tc
Transfer Clock
Stop
bit
Data is written to
the UARTi register
An "L" signal is applied from the SIM
card due to a parity error
An interrupt routine
detects "H" or "L"
TxD2
"0
"
"1
"
Transfer Clock
Read the U2RB register
RxD
2
pin Level
(2)
TxD
2
RxD
2
pin Level
(1)
Data is transferred from the U2TB
register to the UART2 transmit
register
RE bit in U2C1
register
RI bit in U2C1
register
IR bit in S2RIC
register
TE bit in U2C1
register
TI bit in U2C1
register
TXEPT bit in U2
C0 register
IR bit in S2TIC
register
Start
bit
Set to "0" by an interrupt request acknowledgement or by program
Stop
bit
TxD
2
outputs "L" due
to a parity error
Parity
bit
"0
"
"1"
"0"
"0"
"1"
(1) Transmit Timing
(2) Receive Timing
Parity Error Signal
returned from
Receiving End
Transmit Waveform
from the
Transmitting End
"1"
SP
An interrupt routine detects
"H" or "L"
SP
TC
The above timing diagram applies to the case where data is
transferred in the direct format.
• U2MR register STPS bit = 0 (1 stop bit)
• U2MR register PRY bit = 1 (even)
• U2C0 register UFORM bit = 0 (LSB first)
• U2C1 register U2LCH bit = 0 (no reverse)
• U2C1 register U2IRSCH bit = 1 (transmit is completed)
Tc = 16 (n + 1) / fi or 16 (n + 1) / f
EXT
fi : frequency of U2BRG count source (f
1SIO
, f
2SIO
, f
8SIO
, f
32SIO
)
f
EXT
: frequency of U2BRG count source (external clock)
n : value set to U2BRG
The above timing diagram applies to the case where data is
transferred in the direct format.
• U2MR register STPS bit = 0 (1 stop bit)
• U2MR register PRY bit = 1 (even)
• U2C0 register UFORM bit = 0 (LSB first)
• U2C1 register U2LCH bit = 0 (no reverse)
• U2C1 register U2IRSCH bit = 1 (transmit is completed)
NOTES:
1. Because TxD
2
and RxD
2
are connected, this is composite waveform consisting of the TxD
2
output and the parity error
signal sent back from receiver.
2. Because TxD
2
and RxD
2
are connected, this is composite waveform consisting of the transmitter's transmit waveform
and the parity error signal received.
Tc = 16 (n + 1) / fi or 16 (n + 1) / f
EXT
fi : frequency of U2BRG count source (f
1SIO
, f
2SIO
, f
8SIO
, f
32SIO
)
f
EXT
: frequency of U2BRG count source (external clock)
n : value set to U2BRG