Datasheet
Table Of Contents
- Notes regarding these materials
- General Precautions in the Handling of MPU/MCU Products
- How to Use This Manual
- Table of Contents
- Quick Reference by Address B-
- 1. Overview
- 2. Central Processing Unit (CPU)
- 2.1 Data Registers (R0, R1, R2 and R3)
- 2.2 Address Registers (A0 and A1)
- 2.3 Frame Base Register (FB)
- 2.4 Interrupt Table Register (INTB)
- 2.5 Program Counter (PC)
- 2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)
- 2.7 Static Base Register (SB)
- 2.8 Flag Register (FLG)
- 2.8.1 Carry Flag (C Flag)
- 2.8.2 Debug Flag (D Flag)
- 2.8.3 Zero Flag (Z Flag)
- 2.8.4 Sign Flag (S Flag)
- 2.8.5 Register Bank Select Flag (B Flag)
- 2.8.6 Overflow Flag (O Flag)
- 2.8.7 Interrupt Enable Flag (I Flag)
- 2.8.8 Stack Pointer Select Flag (U Flag)
- 2.8.9 Processor Interrupt Priority Level (IPL)
- 2.8.10 Reserved Area
- 3. Memory
- 4. Special Function Registers (SFRs)
- 5. Reset
- 6. Processor Mode
- 7. Clock Generation Circuit
- 8. Protection
- 9. Interrupt
- 10. Watchdog Timer
- 11. DMAC
- 12. Timer
- 13. Serial I/O
- 14. A/D Converter
- 15. CRC Calculation Circuit
- 16. Programmable I/O Ports
- 16.1 Port Pi Direction Register (PDi Register, i = 1, 6 to 10)
- 16.2 Port Pi Register (Pi Register, i = 1, 6 to 10)
- 16.3 Pull-up Control Register 0 to Pull-up Control Register 2 (PUR0 to PUR2 Registers)
- 16.4 Port Control Register
- 16.5 Pin Assignment Control register (PACR)
- 16.6 Digital Debounce function
- 17. Flash Memory Version
- 17.1 Flash Memory Performance
- 17.2 Memory Map
- 17.3 Functions To Prevent Flash Memory from Rewriting
- 17.4 CPU Rewrite Mode
- 17.5 Register Description
- 17.6 Precautions in CPU Rewrite Mode
- 17.6.1 Operation Speed
- 17.6.2 Prohibited Instructions
- 17.6.3 Interrupts
- 17.6.4 How to Access
- 17.6.5 Writing in the User ROM Space
- 17.6.6 DMA Transfer
- 17.6.7 Writing Command and Data
- 17.6.8 Wait Mode
- 17.6.9 Stop Mode
- 17.6.10 Low Power Consumption Mode and On-chip Oscillator-Low Power Consumption Mode
- 17.7 Software Commands
- 17.8 Status Register
- 17.9 Standard Serial I/O Mode
- 17.10 Parallel I/O Mode
- 18. Electrical Characteristics
- 19. Usage Notes
- 19.1 SFR
- 19.2 PLL Frequency Synthesizer
- 19.3 Power Control
- 19.4 Protect
- 19.5 Interrupts
- 19.6 DMAC
- 19.7 Timer
- 19.8 Serial I/O
- 19.9 A/D Converter
- 19.10 Programmable I/O Ports
- 19.11 Electric Characteristic Differences Between Mask ROM
- 19.12 Mask ROM Version
- 19.13 Flash Memory Version
- 19.13.1 Functions to Inhibit Rewriting Flash Memory
- 19.13.2 Stop mode
- 19.13.3 Wait mode
- 19.13.4 Low power dissipation mode, on-chip oscillator low power dissipation mode
- 19.13.5 Writing command and data
- 19.13.6 Program Command
- 19.13.7 Operation speed
- 19.13.8 Instructions prohibited in EW0 Mode
- 19.13.9 Interrupts
- 19.13.10 How to access
- 19.13.11 Writing in the user ROM area
- 19.13.12 DMA transfer
- 19.13.13 Regarding Programming/Erasure Times and Execution Time
- 19.13.14 Definition of Programming/Erasure Times
- 19.13.15 Flash Memory Version Electrical Characteristics 10,000 E/W cycle product
- 19.13.16 Boot Mode
- 19.14 Noise
- 19.15 Instruction for a Device Use
- Appendix 1. Package Dimensions
- Appendix 2. Functional Difference
- Register Index
- REVISION HISTORY

11. DMAC
page 90
923fo7002,51.beF00.2.veR
0020-2020B90JER
)T62/C61M,B62/C61M,A62/C61M(puorGA62/C61M
11.3 DMA Enable
When a data transfer starts after setting the DMAE bit in DMiCON register (i = 0, 1) to “1” (enabled), the
DMAC operates as follows:
(1) Reload the forward address pointer with the SARi register value when the DSD bit in the DMiCON
register is “1” (forward) or the DARi register value when the DAD bit in the DMiCON register is “1” (forward).
(2) Reload the DMAi transfer counter with the DMAi transfer counter reload register value.
If the DMAE bit is set to “1” again while it remains set, the DMAC performs the above operation. However,
if a DMA request may occur simultaneously when the DMAE bit is being written, follow the steps below.
Step 1: Write “1” to the DMAE bit and DMAS bit in DMiCON register simultaneously.
Step 2: Make sure that the DMAi is in an initial state as described above (1) and (2) in a program.
If the DMAi is not in an initial state, the above steps should be repeated.
11.4 DMA Request
The DMAC can generate a DMA request as triggered by the cause of request that is selected with the DMS
and DSEL3 to DSEL0 bits in the DMiSL register (i = 0, 1) on either channel. Table 11.4.1 shows the timing
at which the DMAS bit changes state.
Whenever a DMA request is generated, the DMAS bit is set to “1” (DMA requested) regardless of whether
or not the DMAE bit is set. If the DMAE bit was set to “1” (enabled) when this occurred, the DMAS bit is set
to “0” (DMA not requested) immediately before a data transfer starts. This bit cannot be set to “1” in a
program (it can only be set to “0”).
The DMAS bit may be set to “1” when the DMS or the DSEL3 to DSEL0 bits change state. Therefore,
always be sure to set the DMAS bit to “0” after changing the DMS or the DSEL3 to DSEL0 bits.
Because if the DMAE bit is “1”, a data transfer starts immediately after a DMA request is generated, the
DMAS bit in almost all cases is “0” when read in a program. Read the DMAE bit to determine whether the
DMAC is enabled.
Table 11.4.1 Timing at Which the DMAS Bit Changes State
DMA factor
Software trigger
Peripheral function
Timing at which the bit is set to “1” Timing at which the bit is set to “0”
DMAS bit in the DMiCON register
When the DSR bit in the DMiSL
register is set to “1”
When the interrupt control register
for the peripheral function that is
selected by the DSEL3 to DSEL0
and DMS bits in the DMiSL register
has its IR bit set to “1”
• Immediately before a data transfer starts
• When set by writing “0” in a program