Datasheet
Section 14 Serial Communication Interface (SCI, IrDA)
Rev.6.00 Mar. 18, 2009 Page 607 of 980
REJ09B0050-0600
asynchronous mode) as determined by bits BCP1 and BCP0. In reception, the SCI samples the
falling edge of the start bit using the basic clock, and performs internal synchronization. As
shown in figure 14.25, by sampling receive data at the rising-edge of the 16th, 32nd, 186th, or
128th pulse of the basic clock, data can be latched at the middle of the bit. The reception margin is
given by the following formula.
M = | (0.5 – ) – (L – 0.5) F – (1 + F) | 100%
1
2N
| D – 0.5 |
N
Where M: Reception margin (%)
N: Ratio of bit rate to clock (N = 32, 64, 372, and 256)
D: Clock duty (D = 0 to 1.0)
L: Frame length (L = 10)
F: Absolute value of clock frequency deviation
Assuming values of F = 0, D = 0.5 and N = 372 in the above formula, the reception margin
formula is as follows.
M = (0.5 – 1/2 × 372) × 100%
= 49.866%
Internal
basic clock
372 clocks
186 clocks
Receive data
(RxD)
Synchronization
sampling timing
D0 D1
Data sampling
timing
185
371 0
371
185
0
0
Start bit
Figure 14.25 Receive Data Sampling Timing in Smart Card Mode
(Using Clock of 372 Times the Bit Rate)