Datasheet
Section 14 Serial Communication Interface (SCI, IrDA)
Rev.6.00 Mar. 18, 2009 Page 547 of 980
REJ09B0050-0600
already been written to TDR during serial transmission, the SCI transfers the written data to TSR
to continue transmission. Although TDR can be read or written to by the CPU at all times, to
achieve reliable serial transmission, write transmit data to TDR for only once after confirming that
the TDRE bit in SSR is set to 1.
14.3.4 Transmit Shift Register (TSR)
TSR is a shift register that transmits serial data. To perform serial data transmission, the SCI first
transfers transmit data from TDR to TSR, then sends the data to the TxD pin starting. TSR cannot
be directly accessed by the CPU.
14.3.5 Serial Mode Register (SMR)
SMR is used to set the SCI’s serial transfer format and select the on-chip baud rate generator clock
source.
Some bit functions of SMR differ in normal serial communication interface mode and Smart Card
interface mode.
Normal Serial Communication Interface Mode (When SMIF in SCMR is 0)
Bit Bit Name Initial Value R/W Description
7 C/A 0 R/W Communication Mode
0: Asynchronous mode
1: Clocked synchronous mode
6 CHR 0 R/W Character Length (enabled only in asynchronous
mode)
0: Selects 8 bits as the data length.
1: Selects 7 bits as the data length. LSB-first is
fixed and the MSB (bit 7) of TDR is not
transmitted in transmission.
In clocked synchronous mode, a fixed data length
of 8 bits is used.
5 PE 0 R/W Parity Enable (enabled only in asynchronous
mode)
When this bit is set to 1, the parity bit is added to
transmit data before transmission, and the parity
bit is checked in reception. For a multiprocessor
format, parity bit addition and checking are not
performed regardless of the PE bit setting.