To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.
Notice 1. 2. 3. 4. 5. 6. 7. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office.
To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER DESCRIPTION The 4513/4514 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with serial I/O, four 8-bit timers (each timer has a reload register), and 10-bit A-D converter.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PIN CONFIGURATION (TOP VIEW) 4513 Group 32 P13 D1 2 31 P12 D2 3 30 P11 D3 4 29 P10 D4 5 28 P03 D5 6 27 P02 D6/CNTR0 7 26 P01 D7/CNTR1 8 25 P00 P20/SCK 9 24 AIN3/CMP1+ 23 AIN2/CMP1- 22 AIN1/CMP0+ 21 AIN0/CMP0- 20 P31/INT1 P21/SOUT 10 P22/SIN 11 M34513Mx-XXXSP 1 M34513E4SP D0 RESET 12 C N VS S 13 XOUT 14 19 P30/INT0 XIN 15 18 VDCE VSS 16 17 VDD 25 P03 26 P10 27
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PIN CONFIGURATION (TOP VIEW) 4514 Group 42 P12 D0 2 41 P11 D1 3 40 P10 D2 4 39 P03 D3 5 38 P02 D4 6 D6/CNTR0 8 D7/CNTR1 9 P50 10 P51 11 P52 12 P53 13 P20/SCK 14 P21/SOUT 15 P22/SIN 16 M34514E8FP D5 7 M34514Mx-XXXFP P13 1 RESET 17 CNVSS 18 XOUT 36 P00 35 P43/AIN7 34 P42/AIN6 33 P41/AIN5 32 P40/AIN4 31 AIN3/CMP1+ 30 AIN2/CMP129 AIN1/CMP0+ 28 AIN0/CMP027 P33 26 P32 25 P31/INT1 24 P30/INT0 19 XIN 20 23 VDCE 2
4 Port P0 Port P1 4 Port P2 3 Serial I/O (8 bits ✕ 1) A-D converter (10 bits ✕ 4 ch) Watchdog timer (16 bits) Timer 4 (8 bits) Timer 3 (8 bits) Timer 2 (8 bits) Timer 1 (8 bits) Timer Port P3 2 8 Port D Register A (4 bits) Register B (4 bits) Register D (3 bits) Register E (8 bits) Stack register SK (8 levels) Interrupt stack register SDP (1 level) ALU (4 bits) 4500 Series CPU core Voltage comparator (2 circuits) Internal peripheral functions I/O port 4 128, 256, 384 words ✕ 4 bits R
5 Port P0 Port P1 4 Port P2 3 Serial I/O (8 bits ✕ 1) A-D converter (10 bits ✕ 8 ch) Watchdog timer (16 bits) Timer 4 (8 bits) Timer 3 (8 bits) Timer 2 (8 bits) Timer 1 (8 bits) Timer Port P3 4 Port P4 4 Register A (4 bits) Register B (4 bits) Register D (3 bits) Register E (8 bits) Stack register SK (8 levels) Interrupt stack register SDP (1 level) ALU (4 bits) 4500 Series CPU core Voltage comparator (2 circuits) Internal peripheral functions I/O port 4 Port D 8 384 words ✕ 4 bits
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PERFORMANCE OVERVIEW Parameter 4513 Group Number of 4514 Group basic instructions Minimum instruction execution time M34513M2 Memory sizes ROM M34513M4/E4 M34513M6 M34513M8/E8 M34514M6 M34514M8/E8 RAM M34513M2 M34513M4/E4 M34513M6 M34513M8/E8 M34514M6 M34514M8/E8 I/O (Input is Input/Output D0–D7 examined by ports skip decision) P00–P03 I/O P10–P13 I/O P20–P22 Input P30–P33 I/O Timers P40–P43 P50–P53 CNTR0 CNTR1 INT0 INT1 Time
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PIN DESCRIPTION 7 Function Pin VDD VSS VDCE Name Power supply Ground Voltage drop detection circuit enable CNVSS RESET CNVSS — Connect CNVSS to VSS and apply “L” (0V) to CNVSS certainly. Reset input I/O XIN XOUT D0–D7 System clock input System clock output I/O port D (Input is examined by skip decision.) An N-channel open-drain I/O pin for a system reset.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER MULTIFUNCTION Pin D6 D7 P20 P21 P22 P30 P31 Multifunction CNTR0 CNTR1 SCK SOUT SIN INT0 INT1 Pin CNTR0 CNTR1 SCK SOUT SIN INT0 INT1 Multifunction D6 D7 P20 P21 P22 P30 P31 Pin AIN0 AIN1 AIN2 AIN3 P40 P41 P42 P43 Multifunction CMP0CMP0+ CMP1CMP1+ AIN4 AIN5 AIN6 AIN7 Pin CMP0CMP0+ CMP1CMP1+ AIN4 AIN5 AIN6 AIN7 Multifunction AIN0 AIN1 AIN2 AIN3 P40 P41 P42 P43 Notes 1: Pins except above have just single function.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PORT FUNCTION Port Port D Pin Port P0 D0–D5 D6/CNTR0 D7/CNTR1 P00–P03 Port P1 Port P2 Port P3 (Note 1) Port P4 (Note 2) Port P5 (Note 2) Input Output I/O (8) Output structure N-channel open-drain Control instructions SD, RD SZD CLD OP0A IAP0 Control registers N-channel open-drain 4 P10–P13 I/O (4) N-channel open-drain 4 OP1A IAP1 PU0, K0 P20/SCK P21/SOUT P22/SIN P30/INT0 P31/INT1 P32, P33 Input (3) 3 IAP2
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PORT BLOCK DIAGRAMS K00 Pull-up transistor Key-on wakeup input PU00 IAP0 instruction Register A P00,P01 Ai D OP0A instruction T Q K01 Pull-up transistor Key-on wakeup input PU01 IAP0 instruction P02,P03 Register A Ai D OP0A instruction T Q K02 Pull-up transistor Key-on wakeup input PU02 IAP1 instruction P10,P11 Register A Ai D OP1A instruction T Q K03 Pull-up transistor Key-on wakeup input PU03 IAP1
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PORT BLOCK DIAGRAMS (continued) IAP2 instruction Register A Synchronous clock input for serial transfer J11 P20/SCK 0 Synchronous clock output for serial transfer 1 J10 IAP2 instruction Register A J11 P21/SOUT 0 Serial data output 1 Serial data input IAP2 instruction Register A P22/SIN Key-on wakeup input External interrupt circuit IAP3 instruction Register A P30/INT0,P31/INT1 Ai D OP3A instruction T Q IA
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PORT BLOCK DIAGRAMS (continued) Q1 Decoder Analog input Q30 CMP0 AIN0/CMP0- + Q32 Q1 Decoder AIN1/CMP0+ Analog input Q1 Decoder Analog input Q31 CMP1 AIN2/CMP1- + Q33 Q1 Decoder AIN3/CMP1+ Analog input IAP4 instruction P40/AIN4–P43/AIN7 Register A Ai OP4A instruction D T Q Q1 Decoder Analog input This symbol represents a parasitic diode on the port. • • i represents 0, 1, 2, or 3.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PORT BLOCK DIAGRAMS (continued) Direction register FR0i Ai D OP5A instruction T P50–P53 Q Register A IAP5 instruction Register Y Decoder Skip decision (SZD instruction) CLD instruction D0–D5 S SD instruction RD instruction R Q Skip decision (SZD instruction) Clock input for timer 2 event count Register Y Decoder CLD instruction S SD instruction R RD instruction Q W60 0 D6/CNTR0 1 Timer 1 underflow signa
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER I12 Falling One-sided edge detection circuit 0 I11 0 P30/INT0 1 EXF0 External 0 interrupt EXF1 External 1 interrupt 1 Both edges detection circuit Rising Wakeup Skip SNZI0 I22 Falling 0 One-sided edge detection circuit I21 0 P31/INT1 1 1 Rising Both edges detection circuit Wakeup Skip SNZI1 This symbol represents a parasitic diode on the port.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER FUNCTION BLOCK OPERATIONS CPU (CY) (1) Arithmetic logic unit (ALU) (M(DP)) The arithmetic logic unit ALU performs 4-bit arithmetic such as 4bit data addition, comparison, AND operation, OR operation, and bit manipulation. Addition ALU (A) (2) Register A and carry flag Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (5) Stack registers (SKS) and stack pointer (SP) Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when; • branching to an interrupt service routine (referred to as an interrupt service routine), • performing a subroutine call, or • executing the table reference instruction (TABP p).
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (8) Program counter (PC) Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PROGRAM MEMOY (ROM) The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34514M8/E8.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER DATA MEMORY (RAM) Table 2 RAM size 1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM. Table 2 shows the RAM size. Figure 12 shows the RAM map.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER INTERRUPT FUNCTION The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied. • An interrupt activated condition is satisfied (request flag = “1”) • Interrupt enable bit is enabled (“1”) • Interrupt enable flag is enabled (INTE = “1”) Table 3 shows interrupt sources.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (4) Internal state during an interrupt The internal state of the microcomputer during an interrupt is as follows (Figure 14). • Program counter (PC) An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK). • Interrupt enable flag (INTE) INTE flag is cleared to “0” so that interrupts are disabled.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (6) Interrupt control registers • Interrupt control register V1 Interrupt enable bits of external 0, external 1, timer 1 and timer 2 are assigned to register V1. Set the contents of this register through register A with the TV1A instruction. The TAV1 instruction can be used to transfer the contents of register V1 to register A.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (7) Interrupt sequence Interrupts only occur when the respective INTE flag, interrupt enable bits (V1 0–V13 and V20–V23 ), and interrupt request flag are “1.” The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER EXTERNAL INTERRUPTS The 4513/4514 Group has two external interrupts (external 0 and external 1). An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection). The external interrupts can be controlled with the interrupt control registers I1 and I2.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (1) External 0 interrupt request flag (EXF0) (2) External 1 interrupt request flag (EXF1) External 0 interrupt request flag (EXF0) is set to “1” when a valid waveform is input to P30/INT0 pin. The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16). The state of EXF0 flag can be examined with the skip instruction (SNZ0).
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (3) External interrupt control registers • Interrupt control register I1 Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A. • Interrupt control register I2 Register I2 controls the valid waveform for the external 1 interrupt.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER TIMERS The 4513/4514 Group has the programmable timers. • Programmable timer The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to “1,” new data is loaded from the reload register, and count continues (auto-reload function).
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER The 4513/4514 Group timer consists of the following circuits. • Prescaler : frequency divider • Timer 1 : 8-bit programmable timer • Timer 2 : 8-bit programmable timer • Timer 3 : 8-bit programmable timer • Timer 4 : 8-bit programmable timer (Timers 1 to 4 have the interrupt function, respectively) • 16-bit timer Prescaler and timers 1 to 4 can be controlled with the timer control registers W1 to W6.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Instruction clock Prescaler W13 Divistion circuit (divided by 2) MR3 XIN 1 0 Internal clock generating circuit (divided by 3) I12 0 P30/INT0 1/4 0 1 1/16 1 1 0 Both edges detection circuit Rising ORCLK I11 One-sided edge detection circuit Falling W12 0 (Note 1) SQ 1 I10 W10 1 0 R W11 (Note 3) 0 Timer 1 (8) T1F Timer 1 interrupt T2F Timer 2 interrupt 1 Reload register R1 (8) T1AB (TAB1) (TR1
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Table 10 Timer control registers Timer control register W1 W13 Prescaler control bit W12 Prescaler dividing ratio selection bit W11 Timer 1 control bit W10 Timer 1 count start synchronous circuit control bit Timer 2 control bit W22 Not used W21 Timer 2 count source selection bits W20 at reset : 00002 0 1 0 1 W33 Timer 3 control bit W32 Timer 3 count start synchronous circuit control bit W31 Timer 3 count source
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (1) Timer control registers (4) Timer 1 (interrupt function) • Timer control register W1 Register W1 controls the count operation of timer 1, the selection of count start synchronous circuit, and the frequency dividing ratio and count operation of prescaler. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (6) Timer 3 (interrupt function) (9) Timer I/O pin (D6/CNTR0, D7/CNTR1) Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER WATCHDOG TIMER Watchdog timer provides a method to reset the system when a program runs wild. Watchdog timer consists of a 16-bit timer (WDT), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2). The timer WDT downcounts the instruction clocks as the count source. The underflow signal is generated when the count value reaches “000016.” This underflow signal can be used as the timer 2 count source.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER SERIAL I/O Table 11 Serial I/O pins The 4513/4514 Group has a built-in clock synchronous serial I/O which can serially transmit or receive 8-bit data.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER When transmitting (D7–D0 : transfer data) Serial I/O register (SI) When receiving SIN pin SOUT pin SOUT pin SIN pin D7 D6 D5 D4 D3 D2 D1 D0 D7 D6 D5 D4 D3 D2 D1 D0 ∗ D7 D6 D5 D4 D3 D2 D1 ∗ ∗ Transfer data to be set Transfer started D7 D6 D5 D4 D3 D2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Serial I/O register (SI) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ D0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ D1 D0 Transfer completed ∗ ∗ ∗ ∗ ∗ ∗ D7 D6 D5 D4 D3 D2 D1 D0 Fig.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (5) How to use serial I/O Figure 24 shows the serial I/O connection example. Serial I/O interrupt is not used in this example. In the actual wiring, pull up the Slave (external clock) Master (clock control) D5 ✕ ✕ (Bit 3) 0 ✕ 1 ✕ 1 SRDY signal D5 SCK SCK SOUT SIN SIN SOUT (Bit 0) (Bit 3) wiring between each pin with a resistor.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Master SOUT M7’ SIN M1 M0 S7’ S0 M3 M2 S1 S2 M4 S3 M5 S4 M6 S5 M7 S6 S7 SST instruction SCK Slave SST instruction SRDY signal SOUT SIN S0 S7’ M7’ S1 M0 S2 M1 S3 M2 S4 M3 S5 M4 S6 M5 S7 M6 M0–M7 : the contents of master serial I/O S0–S7 : the contents of slave serial I/O register Rising of SCK : serial input Falling of SCK : serial output Fig.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Table 13 Processing sequence of data transfer from master to slave • Setting the serial I/O mode register J1 and interrupt control register V2 shown in Figure 24. Slave (reception) [Initial setting] • Setting serial I/O mode register J1, and interrupt control register V2 shown in Figure 24. TJ1A and TV2A instructions • Setting the port received the reception enable signal (SRDY) to the input mode.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER A-D CONVERTER Table 14 A-D converter characteristics Parameter Characteristics Conversion format Successive comparison method Resolution 10 bits Relative accuracy Linearity error: ±2LSB The 4513/4514 Group has a built-in A-D conversion circuit that performs conversion by 10-bit successive comparison method. Table 14 shows the characteristics of this A-D converter.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Table 15 A-D control registers at reset : 00002 A-D control register Q1 Q1 3 Not used Q1 2 Q11 Analog input pin selection bits (Note 2) Q1 0 0 1 Q12Q11 Q10 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 A-D control register Q2 Q2 3 Q2 2 Q2 1 Q2 0 A-D operation mode selection bit P43 /AIN7 and P42 /AIN6 pin function selection bit (Not used for the 4513 Group) P41/A IN5 pin function selection bit (Not used for the 4513
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (7) Operation description A-D conversion is started with the A-D conversion start instruction (ADST). The internal operation during A-D conversion is as follows: ➀ When A-D conversion starts, the register AD is cleared to “00016 .” ➁ Next, the topmost bit of the register AD is set to “1,” and the comparison voltage V ref is compared with the analog input voltage VIN.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (8) A-D conversion timing chart Figure 27 shows the A-D conversion timing chart. ADST instruction 62 machine cycles A-D conversion completion flag (ADF) DAC operation signal Fig.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (10) Operation at comparator mode (12) Comparison result store flag (ADF) The A-D converter is set to comparator mode by setting bit 3 of the register Q2 to “1.” Below, the operation at comparator mode is described. In comparator mode, the ADF flag, which shows completion of A-D conversion, stores the results of comparing the analog input voltage with the comparison voltage.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (15) Notes for the use of A-D conversion 2 (16) Definition of A-D converter accuracy Do not change the operating mode (both A-D conversion mode and comparator mode) of A-D converter with bit 3 of register Q2 while A-D converter is operating.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER VOLTAGE COMPARATOR The 4513/4514 Group has 2 voltage comparator circuits that perform comparison of voltage between 2 pins. Table 17 shows the characteristics of this voltage comparison.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Table 18 Voltage comparator control register Q3 at reset : 00002 Voltage comparator control register Q3 (Note 2) Q33 Voltage comparator (CMP1) control bit Q32 Voltage comparator (CMP0) control bit Q31 CMP1 comparison result store bit Q30 CMP0 comparison result store bit 0 1 0 1 0 1 0 1 at RAM back-up : state retained R/W Voltage comparator (CMP1) invalid Voltage comparator (CMP1) valid Voltage comparator (CMP0) inva
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER RESET FUNCTION System reset is performed by applying “L” level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions. Then when “H” level is applied to RESET pin, software starts from address 0 in page 0.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (1) Power-on reset Reset can be performed automatically at power on (power-on reset) by connecting resistors, a diode, and a capacitor to RESET pin. Connect RESET pin and the external circuit at the shortest distance.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER • Program counter (PC) .......................................................................................................... 0 0 0 0 0 0 Address 0 in page 0 is set to program counter. 0 • Interrupt enable flag (INTE) .................................................................................................. 0 • Power down flag (P) ....................................................................................
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER VOLTAGE DROP DETECTION CIRCUIT The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value. RESET pin Internal reset signal Voltage drop detection circuit Watchdog timer output WEF Note: The output structure of RESET pin is N-channel open-drain. Fig.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER RAM BACK-UP MODE The 4513/4514 Group has the RAM back-up mode. When the EPOF and POF instructions are executed continuously, system enters the RAM back-up state. The POF instruction is equal to the NOP instruction when the EPOF instruction is not executed before the POF instruction.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (4) Return signal An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped. Table 21 shows the return condition for each return source. (5) Ports P0 and P1 control registers • Key-on wakeup control register K0 Register K0 controls the ports P0 and P1 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER A (Stabilizing time a ) Reset B POF instruction is executed f(XIN) stop f(XIN) oscillation Return input (Stabilizing time a ) (RAM back-up mode) Stabilizing time a : Time required to stabilize the f(XIN) oscillation is automatically generated by hardware. Fig.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Table 22 Key-on wakeup control register, pull-up control register, and interrupt control register Key-on wakeup control register K0 K03 K02 K01 K00 Pins P1 2 and P13 key-on wakeup control bit Pins P10 and P11 key-on wakeup at reset : 00002 0 1 control bit Pins P0 2 and P03 key-on wakeup 0 1 0 control bit Pins P0 0 and P01 key-on wakeup 1 0 control bit 1 Pull-up control register PU0 Key-on wakeup used Key-on wakeup not
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER CLOCK CONTROL • Control circuit to switch the middle-speed mode and high-speed mode • Control circuit to return from the RAM back-up state The clock control circuit consists of the following circuits.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Clock signal f(XIN) is obtained by externally connecting a ceramic resonator. Connect this external circuit to pins XIN and XOUT at the shortest distance. A feedback resistor is built in between pins XIN and XOUT. When an external clock signal is input, connect the clock source to XIN and leave XOUT open. When using an external clock, the maximum value of external clock oscillating frequency is shown in Table 24.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER LIST OF PRECAUTIONS ➀Noise and latch-up prevention Connect a capacitor on the following condition to prevent noise and latch-up; • connect a bypass capacitor (approx. 0.1 µF) between pins VDD and VSS at the shortest distance, • equalize its wiring in width and length, and • use relatively thick wire. In the One Time PROM version, CNV SS pin is also used as V PP pin.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER ➉ A-D converter-1 When the operating mode of the A-D converter is changed from the comparator mode to the A-D conversion mode with the bit 3 of register Q2 in a program, be careful about the following notes. • Clear the bit 2 of register V2 to “0” to change the operating mode of the A-D converter from the comparator mode to the A-D conversion mode with the bit 3 of register Q2 (refer to Figure 46➄).
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER 16 Voltage comparator function When the voltage comparator function is valid with the voltage comparator control register Q3, it is operating even in the RAM back-up mode. Accordingly, be careful about such state because it causes the increase of the operation current in the RAM backup mode.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER SYMBOL The symbols shown below are used in the following instruction function table and instruction list.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER LIST OF INSTRUCTION FUNCTION (A) ← (Y) TYA (Y) ← (A) (M(DP)) ← (A) (X) ← (X)EXOR(j) (A) ← n (B) ← (E7–E4) (A) ← (E3–E0) TDA TAD TABP p (SP) ← (SP) + 1 (SK(SP)) ← (PC) (DR 2–DR0) ← (A2–A0) (PCH) ← p (A2–A0) ← (DR2 –DR0) (PCL) ← (DR2 –DR0, A3–A0) (A3) ← 0 (B) ← (ROM(PC))7–4 (A) ← (ROM(PC))3–0 TAZ (A1, A0) ← (Z 1, Z0) (A3, A2) ← 0 (PC) ← (SK(SP)) (SP) ← (SP) – 1 TAX (A) ← (X) AM (A) ← (A) + (M(DP)) TASP (A2
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER LIST OF INSTRUCTION FUNCTION (continued) Function GroupMnemonic ing Function DI (INTE) ← 0 TAW4 (A) ← (W4) EI (INTE) ← 1 TW4A (W4) ← (A) SNZ0 (EXF0) = 1 ? TAW6 (A) ← (W6) After skipping (EXF0) ← 0 TW6A (W6) ← (A) TAB1 (B) ← (T17–T14) (A) ← (T13–T10) T1AB (R17–R14) ← (B) SNZ1 (EXF1) = 1 ? After skipping SNZI0 I12 = 1 : (INT0) = “H” ? I12 = 0 : (INT0) = “L” ? SNZI1 I22 = 1 : (INT1) = “H” ? I22 = 0 : (IN
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER LIST OF INSTRUCTION FUNCTION (continued) TK0A (K0) ← (A) TAK0 (A) ← (K0) TPU0A (PU0) ← (A) TAPU0 (A) ← (PU0) TFR0A* TABSI TSIAB (A) ← (SI3–SI0 ) (B) ← (SI7–SI4 ) (SI3–SI0) ← (A) (A) ← (J1) Function TABAD (A) ← (AD5–AD2 ) (B) ← (AD9–AD6 ) However, in the comparator mode, (A) ← (AD3–AD0 ) (B) ← (AD7–AD4 ) TALA (A) ← (AD1, AD0, 0, 0) TADAB (AD3–AD0) ← (A) (FR0) ← (A) (SI7–SI4) ← (B) TAJ1 Grouping Mnemonic (AD
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER INSTRUCTION CODE TABLE (for 4513 Group) D9–D4 000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111 010000 011000 010111 011111 Hex.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER INSTRUCTION CODE TABLE (continued) (for 4513 Group) D9 –D4 100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111 110000 111111 Hex.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER INSTRUCTION CODE TABLE (for 4514 Group) D9–D4 000000 000001 000010 000011 000100 000101 000110 000111 001000 001001 001010 001011 001100 001101 001110 001111 010000 011000 010111 011111 Hex.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER INSTRUCTION CODE TABLE (continued) (for 4514 Group) D9–D4 100000 100001 100010 100011 100100 100101 100110 100111 101000 101001 101010 101011 101100 101101 101110 101111 Hex.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER MACHINE INSTRUCTIONS Number of words Number of cycles Instruction code TAB 0 0 0 0 0 1 1 1 1 0 0 1 E 1 1 (A) ← (B) TBA 0 0 0 0 0 0 1 1 1 0 0 0 E 1 1 (B) ← (A) TAY 0 0 0 0 0 1 1 1 1 1 0 1 F 1 1 (A) ← (Y) TYA 0 0 0 0 0 0 1 1 0 0 0 0 C 1 1 (Y) ← (A) TEAB 0 0 0 0 0 1 1 0 1 0 0 1 A 1 1 (E7–E4) ← (B) (E3–E0) ← (A) TABE 0 0 0 0 1 0 1 0 1 0 0 2 A
MITSUBISHI MICROCOMPUTERS 4513/4514 Group 69 Skip condition Carry flag CY SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER – – Transfers the contents of register B to register A. – – Transfers the contents of register A to register B. – – Transfers the contents of register Y to register A. – – Transfers the contents of register A to register Y. – – Transfers the contents of registers A and B to register E. – – Transfers the contents of register E to registers A and B.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER MACHINE INSTRUCTIONS (continued) Arithmetic operation Bit operation operation Comparison D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 1 n n n n notation Number of cycles Mnemonic Type of instructions Number of words Instruction code Parameter 0 7 n 1 1 (A) ← n n = 0 to 15 Hexadecimal Function LA n 0 0 0 1 1 TABP p 0 0 1 0 p5 p4 p3 p2 p1 p0 0 8 p +p 1 3 (SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← p (PCL) ← (DR2–D
MITSUBISHI MICROCOMPUTERS 4513/4514 Group Skip condition Datailed description Continuous description – Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped. – – Transfers bits 7 to 4 to register B and bits 3 to 0 to register A.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER MACHINE INSTRUCTIONS (continued) Number of words Number of cycles Instruction code Ba 0 1 1 a6 a5 a4 a3 a2 a1 a0 1 8 a +a 1 1 (PCL) ← a6–a0 BL p, a 0 0 1 1 p4 p3 p2 p1 p0 0 E p +p 2 2 (PCH) ← p (PCL) ← a6–a0 (Note) 1 0 p5 a6 a5 a4 a3 a2 a1 a0 2 p a +a 0 0 0 0 1 0 0 1 0 2 2 1 0 p5 p4 0 0 p3 p2 p1 p0 2 p p (PCH) ← p (PCL) ← (DR2–DR0, A3–A0) (Note) BM a 0 1 0 a6 a5 a4 a3 a2 a1 a0 1 a
MITSUBISHI MICROCOMPUTERS 4513/4514 Group Skip condition Carry flag CY SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER – – Branch within a page : Branches to address a in the identical page. – – Branch out of a page : Branches to address a in page p. – – Branch out of a page : Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p. – – Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER MACHINE INSTRUCTIONS (continued) D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SNZI0 0 0 0 0 1 1 1 0 1 0 notation Number of cycles Mnemonic Type of instructions Number of words Instruction code Parameter 0 3 A 1 1 Hexadecimal Function I12 = 1 : (INT0) = “H” ? I12 = 0 : (INT0) = “L” ? SNZI1 0 0 0 0 1 1 1 0 1 1 0 3 B 1 1 I22 = 1 : (INT1) = “H” ? Timer operation Interrupt operation I22 = 0 : (INT1) = “L” ?
MITSUBISHI MICROCOMPUTERS 4513/4514 Group Skip condition 75 Carry flag CY SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Datailed description (INT0) = “H” However, I12 = 1 – When bit 2 (I12) of register I1 is “1” : Skips the next instruction when the level of INT0 pin is “H.” (INT0) = “L” However, I12 = 0 – When bit 2 (I12) of register I1 is “0” : Skips the next instruction when the level of INT0 pin is “L.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER MACHINE INSTRUCTIONS (continued) Number of words Number of cycles Instruction code TAB1 1 0 0 1 1 1 0 0 0 0 2 7 0 1 1 (B) ← (T17–T14 ) (A) ← (T13–T10 ) T1AB 1 0 0 0 1 1 0 0 0 0 2 3 0 1 1 (R17–R14) ← (B) (T17–T14 ) ← (B) (R13–R10) ← (A) (T13–T10 ) ← (A) TAB2 1 0 0 1 1 1 0 0 0 1 2 7 1 1 1 (B) ← (T27–T24 ) (A) ← (T23–T20 ) T2AB 1 0 0 0 1 1 0 0 0 1 2 3 1 1 1 (R27–R24) ←
MITSUBISHI MICROCOMPUTERS 4513/4514 Group 77 Skip condition Carry flag CY SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER – – Transfers the contents of timer 1 to registers A and B. – – Transfers the contents of registers A and B to timer 1 and timer 1 reload register. – – Transfers the contents of timer 2 to registers A and B. – – Transfers the contents of registers A and B to timer 2 and timer 2 reload register. – – Transfers the contents of timer 3 to registers A and B.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER MACHINE INSTRUCTIONS (continued) Number of words Number of cycles Instruction code IAP0 1 0 0 1 1 0 0 0 0 0 2 6 0 1 1 (A) ← (P0) OP0A 1 0 0 0 1 0 0 0 0 0 2 2 0 1 1 (P0) ← (A) IAP1 1 0 0 1 1 0 0 0 0 1 2 6 1 1 1 (A) ← (P1) OP1A 1 0 0 0 1 0 0 0 0 1 2 2 1 1 1 (P1) ← (A) IAP2 1 0 0 1 1 0 0 0 1 0 2 6 2 1 1 (A2–A0) ← (P22–P20) (A3) ← 0 IAP3 1 0 0 1 1 0
MITSUBISHI MICROCOMPUTERS 4513/4514 Group 79 Skip condition Carry flag CY SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER – – Transfers the input of port P0 to register A. – – Outputs the contents of register A to port P0. – – Transfers the input of port P1 to register A. – – Outputs the contents of register A to port P1. – – Transfers the input of port P2 to register A. – – Transfers the input of port P3 to register A. – – Outputs the contents of register A to port P3.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER MACHINE INSTRUCTIONS (continued) Number of words Number of cycles Instruction code TABSI 1 0 0 1 1 1 1 0 0 0 2 7 8 1 1 (A) ← (SI 3–SI0) (B) ← (SI 7–SI4) TSIAB 1 0 0 0 1 1 1 0 0 0 2 3 8 1 1 (SI3–SI0) ← (A) (SI7–SI4) ← (B) TAJ1 1 0 0 1 0 0 0 0 1 0 2 4 2 1 1 (A) ← (J1) TJ1A 1 0 0 0 0 0 0 0 1 0 2 0 2 1 1 (J1) ← (A) SST 1 0 1 0 0 1 1 1 1 0 2 9 E 1 1 (SIOF)
MITSUBISHI MICROCOMPUTERS 4513/4514 Group 81 Skip condition Carry flag CY SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER – – Transfers the contents of serial I/O register SI to registers A and B. – – Transfers the contents of registers A and B to serial I/O register SI. – – Transfers the contents of serial I/O mode register J1 to register A. – – Transfers the contents of register A to serial I/O mode register J1. – – Clears (0) to SIOF flag and starts serial I/O.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER CONTROL REGISTERS Interrupt control register V1 V13 Timer 2 interrupt enable bit V12 Timer 1 interrupt enable bit V11 External 1 interrupt enable bit V10 External 0 interrupt enable bit at reset : 00002 0 1 0 1 0 1 0 1 Interrupt control register V2 V23 Serial I/O interrupt enable bit V22 A-D interrupt enable bit V21 Timer 4 interrupt enable bit V20 Timer 3 interrupt enable bit 0 1 0 1 0 1 0 1 Not used I12 In
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Timer control register W1 W13 Prescaler control bit W12 Prescaler dividing ratio selection bit W11 Timer 1 control bit W10 Timer 1 count start synchronous circuit control bit at reset : 00002 W23 Timer 2 control bit W22 Not used at reset : 0000 2 0 1 0 1 Timer 2 count source selection bits W20 0 0 1 1 W33 Timer 3 control bit W32 Timer 3 count start synchronous circuit control bit W31 Timer 3 count source sel
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Serial I/O mode register J1 J13 Not used J12 Serial I/O internal clock dividing ratio selection bit J11 Serial I/O port selection bit J10 Serial I/O synchronous clock selection bit at reset : 00002 0 1 0 1 0 1 0 1 A-D control register Q1 Q13 Note used Q12 Q11 Analog input pin selection bits (Note 2) Q10 Q23 Q22 Q21 Q20 P43 /AIN7 and P42 /AIN6 pin function selection bit (Not used for the 4513 Group) P41/A IN5 pin
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER Key-on wakeup control register K0 K03 Pins P12 and P13 key-on wakeup control bit K02 Pins P10 and P11 key-on wakeup control bit K01 K00 Pins P02 and P03 key-on wakeup control bit Pins P00 and P01 key-on wakeup control bit at reset : 00002 0 1 0 1 0 1 0 1 Pull-up control register PU0 PU03 PU02 Pins P12 and P13 pull-up transistor control bit Pins P10 and P11 pull-up transistor control bit Pull-up transistor OFF Pull-up t
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER BUILT-IN PROM VERSION In addition to the mask ROM versions, the 4513/4514 Group has programmable ROM version software compatible with mask ROM. The built-in PROM of One Time PROM version can be written to and not be erased. The built-in PROM versions have functions similar to those of the mask ROM versions, but they have PROM mode that enables writing to built-in PROM. Table 25 shows the product of built-in PROM version.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER (1) PROM mode The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM. In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K. Programming adapters are listed in Table 26.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER ABSOLUTE MAXIMUM RATINGS Parameter Symbol VDD Supply voltage VI Input voltage P0, P1, P2, P3, P4, P5, RESET , XIN, VDCE VI VO Input voltage D0–D 7 Input voltage AIN0–AIN7 Output voltage P0, P1, P3, P4, P5, RESET VO VO Output voltage D0–D7 Output voltage XOUT VI Pd Power dissipation Topr Tstg Operating temperature range Storage temperature range 88 Conditions Output transistors in cut-off state Ta = 25 °C Ratin
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER RECOMMENDED OPERATING CONDITIONS 1 (Mask ROM version:Ta = –20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted) (One Time PROM version:Ta = –20 °C to 85 °C, VDD = 2.5 V to 5.5 V, unless otherwise noted) Symbol VDD Parameter Supply voltage Conditions Mask ROM version f(XIN) ≤ 4.2 MHz Middle-speed mode f(XIN) ≤ 3.0 MHz f(XIN) ≤ 4.2 MHz f(XIN) ≤ 2.0 MHz Mask ROM version High-speed mode f(XIN) ≤ 1.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER RECOMMENDED OPERATING CONDITIONS 2 (Mask ROM version:Ta = –20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted) (One Time PROM version:Ta = –20 °C to 85 °C, VDD = 2.5 V to 5.5 V, unless otherwise noted) Symbol f(XIN ) Parameter Oscillation frequency (with a ceramic resonator) Conditions (with external clock input) 4.2 3.0 One Time PROM version Middle-speed mode VDD = 2.5 V to 5.5 V 4.2 VDD = 4.0 V to 5.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER ELECTRICAL CHARACTERISTICS (Mask ROM version:Ta = –20 °C to 85 °C, VDD = 2.0 V to 5.5 V, unless otherwise noted) (One Time PROM version:Ta = –20 °C to 85 °C, VDD = 2.5 V to 5.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER A-D CONVERTER RECOMMENDED OPERATING CONDITIONS (Comparator mode included, Ta = –20 °C to 85 °C, unless otherwise noted) Symbol Parameter VDD VIA Supply voltage Analog input voltage f(XIN) Oscillation frequency Conditions Middle-speed mode, V DD ≥ 2.7 V High-speed mode, VDD ≥ 2.7 V Min. 2.7 0 Limits Typ. Max. 5.5 VDD Unit V V MHz MHz 0.8 0.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER VOLTAGE COMPARATOR RECOMMENDED OPERATING CONDITIONS (Ta = –20 °C to 85 °C, unless otherwise noted) Symbol VDD VINCMP tCMP Parameter Conditions Supply voltage Voltage comparator input voltage Voltage comparator response time VDD = 3.0 V to 5.5 V VDD = 3.0 V to 5.5 V Min. 3.0 0.3VDD Limits Typ. Max. 5.5 0.7VDD 20 Unit V V µs VOLTAGE COMPARATOR CHARACTERISTICS (Ta = –20 °C to 85 °C, VDD = 3.0 V to 5.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER PACKAGE OUTLINE MMP 32P4B EIAJ Package Code SDIP32-P-400-1.78 Plastic 32pin 400mil SDIP Weight(g) 2.2 Lead Material Alloy 42/Cu Alloy 17 1 16 E 32 e1 c JEDEC Code – D L A1 A A2 Symbol e b1 JEDEC Code – Weight(g) b b2 SEATING PLANE 32P6U-A MMP Plastic 32pin 7✕7mm body LQFP Lead Material Cu Alloy MD b2 HD D 32 ME e EIAJ Package Code LQFP32-P-0707-0.
MITSUBISHI MICROCOMPUTERS 4513/4514 Group SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER MMP 42P2R-A EIAJ Package Code SSOP42-P-450-0.80 Plastic 42pin 450mil SSOP JEDEC Code – Weight(g) 0.63 e b2 22 E HE e1 I2 42 Lead Material Alloy 42/Cu Alloy Recommended Mount Pad F Symbol 1 21 A D G A2 e b L L1 y A1 A A1 A2 b c D E e HE L L1 z Z1 y c z Z1 Detail G Detail F b2 e1 I2 Dimension in Millimeters Min Nom Max 2.4 – – – – 0.05 – – 2.0 0.5 0.35 0.4 0.2 0.15 0.13 17.7 17.5 17.3 8.6 8.4 8.
REVISION DESCRIPTION LIST Rev. 4513/4514 GROUP DATA SHEET Revision Description No. Rev. date 1.0 First Edition 980807 1.1 Page 1: APPLICATION revised, Table “Under development” eliminated. 010724 Pages 10 to 14: PORT BLOCK DIAGRAMS revised. Page 24: Fig. 17 revised. Page 28: Table 9 Timer 1 structure and Timer 3 structure revised. Page 29: Fig. 19 revised. Page 32: (10) Count start synchronous circuit (timer 1 and 3) revised.