Owner manual
Table Of Contents
- Features
- Description
- Pin Configuration
- Pin Description: RF Part
- Pin Description: Microcontroller Part
- UHF ASK/FSK Transmitter Block
- Features
- Description
- General Description
- Functional Description
- Absolute Maximum Ratings
- Thermal Resistance
- Electrical Characteristics
- Microcontroller Block
- Features
- Description
- Introduction
- Microcontroller Architecture General Description
- Components of Microcontroller Core
- Master Reset
- Voltage Monitor
- Clock Generation
- Power-down Modes
- Peripheral Modules
- Bi-directional Ports
- Timer 3
- Features
- Timer/Counter Modes
- Timer 3 – Mode 1: Timer/Counter
- Timer 3 – Mode 2: Timer/Counter, External Trigger Restart and External Capture (with T3I Input)
- Timer 3 – Mode 3: Timer/Counter, Internal Trigger Restart and Internal Capture (with TOG2)
- Timer 3 – Mode 4: Timer/Counter
- Timer 3 – Mode 5: Timer/Counter, External Trigger Restart and External Capture (with T3I Input)
- Timer 3 Modulator/Demodulator Modes
- Timer 3 – Mode 6: Carrier Frequency Burst Modulation Controlled by Timer 2 Output Toggle FlipFlo...
- Timer 3 – Mode 7: Carrier Frequency Burst Modulation Controlled by SSI Internal Output (SO)
- Timer 3 – Mode 8: FSK Modulation with Shift Register Data (SO)
- Timer 3 – Mode 9: Pulse-width Modulation with the Shift Register
- Timer 3 – Mode 10: Manchester Demodulation/Pulse-width Demodulation
- Timer 3 – Mode 11: Biphase Demodulation
- Timer 3 – Mode 12: Timer/Counter with External Capture Mode (T3I)
- Timer 3 Modulator for Carrier Frequency Burst Modulation
- Timer 3 Demodulator for Biphase, Manchester and Pulse-width-modulated Signals
- Timer 3 Registers
- Timer 3 Mode Register (T3M)
- Timer 3 Control Register 1 (T3C) Write
- Timer 3 Status Register 1 (T3ST) Read
- Timer 3 Clock Select Register (T3CS)
- Timer 3 Compare- and Compare-mode Register
- Timer 3 Compare-Mode Register 1 (T3CM1)
- Timer 3 Compare Mode Register 2 (T3CM2)
- Timer 3 COmpare Register 1 (T3CO1) Byte Write
- Timer 3 COmpare Register 2 (T3CO2) Byte Write
- Timer 3 Capture Register
- Synchronous Serial Interface (SSI)
- Serial Interface Registers
- Combination Modes
- Absolute Maximum Ratings
- Thermal Resistance
- DC Operating Characteristics
- AC Characteristics
- Crystal Characteristics
- Ordering Information
- Package Information
- Table of Contents

74
T48C862-R8
4590B–4BMCU–02/03
Figure 70. MCL Bus Protocol 2
SSI Interrupt The SSI interrupt INT3 can be generated either by an SSI buffer register status (i.e.,
transmit buffer empty or receive buffer full), the end of SSI data telegram or on the fall-
ing edge of the SC/SD pins on Port 4 (see P4CR). SSI interrupt selection is performed
by the Interrupt FunctioN control bit (IFN). The SSI interrupt is usually used to synchro-
nize the software control of the SSI and inform the controller of the present SSI status.
The Port 4 interrupts can be used together with the SSI or, if the SSI itself is not
required, as additional external interrupt sources. In either case this interrupt is capable
of waking the controller out of sleep mode.
To enable and select the SSI relevant interrupts use the SSI interrupt mask (SIM) and
the Interrupt Function (IFN) while the Port 4 interrupts are enabled by setting appropri-
ate control bits in P4CR register.
Modulation and Demodulation If the shift register is used together with Timer 2 or Timer 3 for modulation or demodula-
tion purposes, the 8-bit synchronous mode must be used. In this case, the unused Port
4 pins can be used as conventional bi-directional ports.
The modulation and demodulation stages, if enabled, operate as soon as the SSI is acti-
vated (SIR = 0) and cease when deactivated (SIR = 1).
Due to the byte-orientated data control, the SSI (when running normally) generates
serial bit streams which are submultiples of 8 bits. An SSI output masking (OMSK) func-
tion permits; however, the generation of bit streams of any length. The OMSK signal is
derived indirectly from the 4-bit prescaler of the Timer 2 and masks out a programmable
number of unrequired trailing data bits during the shifting out of the final data word in the
bit stream. The number of non-masked data bits is defined by the value pre-pro-
grammed in the prescaler compare register. To use output masking, the modulator stop
mode bit (MSM) must be set to "0" before programming the final data word into the SSI
transmit buffer. This in turn, enables shift clocks to the prescaler when this final word is
shifted out. On reaching the compare value, the prescaler triggers the OMSK signal and
all following data bits are blanked.
SC
SD
Start
1n89
1st Bit 8th Bit ACK Stop










