Owner manual
Table Of Contents
- Features
- Description
- Pin Configuration
- Pin Description: RF Part
- Pin Description: Microcontroller Part
- UHF ASK/FSK Transmitter Block
- Features
- Description
- General Description
- Functional Description
- Absolute Maximum Ratings
- Thermal Resistance
- Electrical Characteristics
- Microcontroller Block
- Features
- Description
- Introduction
- Microcontroller Architecture General Description
- Components of Microcontroller Core
- Master Reset
- Voltage Monitor
- Clock Generation
- Power-down Modes
- Peripheral Modules
- Bi-directional Ports
- Timer 3
- Features
- Timer/Counter Modes
- Timer 3 – Mode 1: Timer/Counter
- Timer 3 – Mode 2: Timer/Counter, External Trigger Restart and External Capture (with T3I Input)
- Timer 3 – Mode 3: Timer/Counter, Internal Trigger Restart and Internal Capture (with TOG2)
- Timer 3 – Mode 4: Timer/Counter
- Timer 3 – Mode 5: Timer/Counter, External Trigger Restart and External Capture (with T3I Input)
- Timer 3 Modulator/Demodulator Modes
- Timer 3 – Mode 6: Carrier Frequency Burst Modulation Controlled by Timer 2 Output Toggle FlipFlo...
- Timer 3 – Mode 7: Carrier Frequency Burst Modulation Controlled by SSI Internal Output (SO)
- Timer 3 – Mode 8: FSK Modulation with Shift Register Data (SO)
- Timer 3 – Mode 9: Pulse-width Modulation with the Shift Register
- Timer 3 – Mode 10: Manchester Demodulation/Pulse-width Demodulation
- Timer 3 – Mode 11: Biphase Demodulation
- Timer 3 – Mode 12: Timer/Counter with External Capture Mode (T3I)
- Timer 3 Modulator for Carrier Frequency Burst Modulation
- Timer 3 Demodulator for Biphase, Manchester and Pulse-width-modulated Signals
- Timer 3 Registers
- Timer 3 Mode Register (T3M)
- Timer 3 Control Register 1 (T3C) Write
- Timer 3 Status Register 1 (T3ST) Read
- Timer 3 Clock Select Register (T3CS)
- Timer 3 Compare- and Compare-mode Register
- Timer 3 Compare-Mode Register 1 (T3CM1)
- Timer 3 Compare Mode Register 2 (T3CM2)
- Timer 3 COmpare Register 1 (T3CO1) Byte Write
- Timer 3 COmpare Register 2 (T3CO2) Byte Write
- Timer 3 Capture Register
- Synchronous Serial Interface (SSI)
- Serial Interface Registers
- Combination Modes
- Absolute Maximum Ratings
- Thermal Resistance
- DC Operating Characteristics
- AC Characteristics
- Crystal Characteristics
- Ordering Information
- Package Information
- Table of Contents

44
T48C862-R8
4590B–4BMCU–02/03
Timer 2 8-/12-bit Timer for:
• Interrupt, square-wave, pulse and duty cycle generation
• Baud-rate generation for the internal shift register
• Manchester and Biphase modulation together with the SSI
• Carrier frequency generation and modulation together with the SSI
Timer 2 can be used as an interval timer for interrupt generation, as signal generator or
as baud-rate generator and modulator for the serial interface. It consists of a 4-bit and
an 8-bit up counter stage which both have compare registers. The 4-bit counter stages
of Timer 2 are cascadable as a 12-bit timer or as an 8-bit timer with 4-bit prescaler. The
timer can also be configured as an 8-bit timer and a separate 4-bit prescaler.
The Timer 2 input can be supplied via the system clock, the external input clock (T2I),
the Timer 1 output clock, the Timer 3 output clock or the shift clock of the serial inter-
face. The external input clock T2I is not synchronized with SYSCL. Therefore, it is
possible to use Timer 2 with a higher clock speed than SYSCL. Furthermore, with that
input clock the Timer 2 operates in the power-down mode SLEEP (CPU core -> sleep
and OSC-Stop -> yes) as well as in the POWER-DOWN (CPU core -> sleep and OSC-
Stop -> no). All other clock sources supplied no clock signal in SLEEP. The 4-bit counter
stages of Timer 2 have an additional clock output (POUT).
Its output has a modulator stage that allows the generation of pulses as well as the gen-
eration and modulation of carrier frequencies. The Timer 2 output can modulate with the
shift register data output to generate Biphase- or Manchester code.
If the serial interface is used to modulate a bitstream, the 4-bit stage of Timer 2 has a
special task. The shift register can only handle bitstream lengths divisible by 8. For other
lengths, the 4-bit counter stage can be used to stop the modulator after the right bitcount
is shifted out.
If the timer is used for carrier frequency modulation, the 4-bit stage works together with
an additional 2-bit duty cycle generator like a 6-bit prescaler to generate carrier fre-
quency and duty cycle. The 8-bit counter is used to enable and disable the modulator
output for a programmable count of pulses.
For programming the time interval, the timer has a 4-bit and an 8-bit compare register.
For programming the timer function, it has four mode and control registers. The compar-
ator output of stage 2 is controlled by a special compare mode register (T2CM). This
register contains mask bits for the actions (counter reset, output toggle, timer interrupt)
which can be triggered by a compare match event or the counter overflow. This archi-
tecture enables the timer function for various modes.
The Timer 2 has a 4-bit compare register (T2CO1) and an 8-bit compare register
(T2CO2). Both these compare registers are cascadable as a 12-bit compare register, or
8-bit compare register and 4-bit compare register.
For 12-bit compare data value:m = x +1 0 £ x £ 4095
For 8-bit compare data value: n = y +1 0 £ y £ 255
For 4-bit compare data value:l = z +1 0 £ z £ 15










