Manual
Table Of Contents
- Features
- Pin Configurations
- Description
- Architectural Overview- General Purpose Register File
- ALU – Arithmetic Logic Unit
- In-System Programmable Flash Program Memory
- SRAM Data Memory
- Program and Data Addressing Modes- Register Direct, Single Register Rd
- Register Direct, Two Registers Rd and Rr
- I/O Direct
- Data Direct
- Data Indirect with Displacement
- Data Indirect
- Data Indirect with Pre- decrement
- Data Indirect with Post- increment
- Constant Addressing Using the LPM Instruction
- Indirect Program Addressing, IJMP and ICALL
- Relative Program Addressing, RJMP and RCALL
 
- EEPROM Data Memory
- Memory Access Times and Instruction Execution Timing
- I/O Memory
- Reset and Interrupt Handling- Reset Sources
- Power-on Reset
- External Reset
- Brown-out Detection
- Watchdog Reset
- MCU Status Register – MCUSR
- Interrupt Handling
- General Interrupt Mask Register – GIMSK
- General Interrupt Flag Register – GIFR
- Timer/Counter Interrupt Mask Register – TIMSK
- Timer/Counter Interrupt Flag Register – TIFR
- External Interrupts
- Interrupt Response Time
- MCU Control Register – MCUCR
 
- Sleep Modes
 
- Timer/Counters
- 16-bit Timer/Counter1
- Watchdog Timer
- EEPROM Read/Write Access
- Serial Peripheral Interface – SPI
- UART
- Analog Comparator
- Analog-to-Digital Converter
- I/O Ports
- Memory Programming
- Electrical Characteristics
- External Clock Drive Waveforms
- Typical Characteristics
- Register Summary
- Instruction Set Summary
- Ordering Information
- Packaging Information
- Errata for AT90S/LS4433 Rev. Rev. C/D/E/F
- Data Sheet ChangeLog for AT90S/LS4433
- Table of Contents

3
AT90S/LS4433
1042G–AVR–09/02
Description The AT90S4433 is a low-power CMOS 8-bit microcontroller based on the AVR RISC
architecture. By executing powerful instructions in a single clock cycle, the AT90S4433
achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to
optimize power consumption versus processing speed.
The AVR core combines a rich instruction set with 32 general purpose working registers.
All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing
two independent registers to be accessed in one single instruction, executed in one
clock cycle. The resulting architecture is more code efficient while achieving throughputs
up to ten times faster than conventional CISC microcontrollers.
The AT90S4433 provides the following features: 4K bytes of In-System Programmable
Flash, 256 bytes of EEPROM, 128 bytes of SRAM, 20 general purpose I/O lines, 32
general purpose working registers, two flexible Timer/Counters with compare modes,
internal and external interrupts, a programmable serial UART, 6-channel, 10-bit ADC,
programmable Watchdog Timer with internal Oscillator, an SPI serial port and two soft-
ware-selectable Power-saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counters, SPI port and interrupt system to continue functioning. The
Power-down mode saves the register contents but freezes the Oscillator, disabling all
other chip functions until the next interrupt or Hardware Reset.
The device is manufactured using Atmel’s high-density non-volatile memory technology.
The On-chip Flash Program memory can be re-programmed In-System through an SPI
serial interface or by a conventional non-volatile memory programmer. By combining a
RISC 8-bit CPU with In-System Programmable Flash on a monolithic chip, the Atmel
AT90S4433 is a powerful microcontroller that provides a highly flexible and cost-effec-
tive solution to many embedded control applications.
The AT90S4433 AVR is supported with a full suite of program and system development
tools including: C Compilers, macro assemblers, program debugger/simulators, In-Cir-
cuit Emulators and evaluation kits.
Table 1. Comparison Table
Device Flash EEPROM SRAM Voltage Range Frequency
AT90S4433 4K 256B 128B 4.0V - 6.0V 0 - 8 MHz
AT90LS4433 4K 256B 128B 2.7V - 6.0V 0 - 4 MHz










