User guide

31
AT25DL161 [DATASHEET]
8795E–DFLASH–12/2012
10.3 Read Sector Lockdown Registers
The Sector Lockdown Registers can be read to determine the current lockdown status of each physical 64KB sector. To
read the Sector Lockdown Register for a particular 64KB sector, the
CS pin must first be asserted and then the opcode
35h must be clocked in. Once the opcode has been clocked in, three address bytes designating any address within the
64KB sector must be clocked in. After the address bytes have been clocked in, data will be output on the SO pin during
every subsequent clock cycle. The data being output will be a repeating byte of either FFh or 00h to denote the value of
the appropriate Sector Lockdown Register.
At clock frequencies above f
CLK
, the first byte of data output will not be valid. Therefore, if operating at clock frequencies
above f
CLK
, at least two bytes of data must be clocked out from the device in order to determine the correct status of the
appropriate Sector Lockdown Register.
Deasserting the
CS pin will terminate the read operation and put the SO pin into a high-impedance state. The CS pin can
be deasserted at any time and does not require that a full byte of data be read.
Figure 10-3. Read Sector Lockdown Register
Table 10-2. Read Sector Lockdown Register – Output Data
Output Data Sector Lockdown Register Value
00h Sector Lockdown Register value is 0 (sector is not locked down).
FFh Sector Lockdown Register value is 1 (sector is permanently locked down).
SCK
CS
SI
SO
MSB MSB
2310
00110101
675410119812 394243414037 3833 36353431 3229 30 44 47 484645
Opcode
AAAA AAAAA
MSB
XXXXXXXX
MSB MSB
DDDDDDDDDD
Address Bits A23-A0 Don't Care
Data Byte
High-impedance