User Manual
Table Of Contents
- Chapter 1 INTRODUTION
- Chapter 2 INSTALLATION
- Chapter 3 Switch Management
- Chapter 4 Basic Switch Configuration
- Chapter 5 File System Operations
- Chapter 6 Cluster Configuration
- Chapter 7 Port Configuration
- Chapter 8 Port Isolation Function Configuration
- Chapter 9 Port Loopback Detection Function Configuration
- Chapter 10 ULDP Function Configuration
- Chapter 11 LLDP Function Operation Configuration
- Chapter 12 Port Channel Configuration
- Chapter 13 Jumbo Configuration
- Chapter 14 EFM OAM Configuration
- Chapter 15 VLAN Configuration
- Chapter 16 MAC Table Configuration
- Chapter 17 MSTP Configuration
- Chapter 18 QoS Configuration
- Chapter 19 Flow-based Redirection
- Chapter 20 Egress QoS Configuration
- Chapter 21 Flexible QinQ Configuration
- Chapter 22 Layer 3 Forward Configuration
- Chapter 23 ARP Scanning Prevention Function Configuration
- Chapter 24 Prevent ARP, ND Spoofing Configuration
- Chapter 25 ARP GUARD Configuration
- Chapter 26 ARP Local Proxy Configuration
- Chapter 27 Gratuitous ARP Configuration
- Chapter 28 Keepalive Gateway Configuration
- Chapter 29 DHCP Configuration
- Chapter 30 DHCPv6 Configuration
- Chapter 31 DHCP option 82 Configuration
- Chapter 32 DHCPv6 option37, 38
- Chapter 33 DHCP Snooping Configuration
- Chapter 34 Routing Protocol Overview
- Chapter 35 Static Route
- Chapter 36 RIP
- Chapter 37 RIPng
- Chapter 38 OSPF
- Chapter 39 OSPFv3
- Chapter 40 BGP
- 40.1 Introduction to BGP
- 40.2 BGP Configuration Task List
- 40.3 Configuration Examples of BGP
- 40.3.1 Examples 1: configure BGP neighbor
- 40.3.2 Examples 2: configure BGP aggregation
- 40.3.3 Examples 3: configure BGP community attributes
- 40.3.4 Examples 4: configure BGP confederation
- 40.3.5 Examples 5: configure BGP route reflector
- 40.3.6 Examples 6: configure MED of BGP
- 40.3.7 Examples 7: example of BGP VPN
- 40.4 BGP Troubleshooting
- Chapter 41 MBGP4+
- Chapter 42 Black Hole Routing Manual
- Chapter 43 GRE Tunnel Configuration
- Chapter 44 ECMP Configuration
- Chapter 45 BFD
- Chapter 46 BGP GR
- Chapter 47 OSPF GR
- Chapter 48 IPv4 Multicast Protocol
- 48.1 IPv4 Multicast Protocol Overview
- 48.2 PIM-DM
- 48.3 PIM-SM
- 48.4 MSDP Configuration
- 48.4.1 Introduction to MSDP
- 48.4.2 Brief Introduction to MSDP Configuration Tasks
- 48.4.3 Configuration of MSDP Basic Function
- 48.4.4 Configuration of MSDP Entities
- 48.4.5 Configuration of Delivery of MSDP Packet
- 48.4.6 Configuration of Parameters of SA-cache
- 48.4.7 MSDP Configuration Examples
- 48.4.8 MSDP Troubleshooting
- 48.5 ANYCAST RP Configuration
- 48.6 PIM-SSM
- 48.7 DVMRP
- 48.8 DCSCM
- 48.9 IGMP
- 48.10 IGMP Snooping
- 48.11 IGMP Proxy Configuration
- Chapter 49 IPv6 Multicast Protocol
- Chapter 50 Multicast VLAN
- Chapter 51 ACL Configuration
- Chapter 52 802.1x Configuration
- 52.1 Introduction to 802.1x
- 52.2 802.1x Configuration Task List
- 52.3 802.1x Application Example
- 52.4 802.1x Troubleshooting
- Chapter 53 The Number Limitation Function of Port, MAC in VLAN and IP Configuration
- 53.1 Introduction to the Number Limitation Function of Port, MAC in VLAN and IP
- 53.2 The Number Limitation Function of Port, MAC in VLAN and IP Configuration Task Sequence
- 53.3 The Number Limitation Function of Port, MAC in VLAN and IP Typical Examples
- 53.4 The Number Limitation Function of Port, MAC in VLAN and IP Troubleshooting Help
- Chapter 54 Operational Configuration of AM Function
- Chapter 55 TACACS+ Configuration
- Chapter 56 RADIUS Configuration
- Chapter 57 SSL Configuration
- Chapter 58 IPv6 Security RA Configuration
- Chapter 59 VLAN-ACL Configuration
- Chapter 60 MAB Configuration
- Chapter 61 PPPoE Intermediate Agent Configuration
- Chapter 62 SAVI Configuration
- Chapter 63 Web Portal Configuration
- Chapter 64 VRRP Configuration
- Chapter 65 IPv6 VRRPv3 Configuration
- Chapter 66 MRPP Configuration
- Chapter 67 ULPP Configuration
- Chapter 68 ULSM Configuration
- Chapter 69 Mirror Configuration
- Chapter 70 RSPAN Configuration
- Chapter 71 sFlow Configuration
- Chapter 72 SNTP Configuration
- Chapter 73 NTP Function Configuration
- Chapter 74 DNSv4/v6 Configuration
- Chapter 75 Summer Time Configuration
- Chapter 76 Monitor and Debug
- Chapter 77 Reload Switch after Specified Time
- Chapter 78 Debugging and Diagnosis for Packets Received and Sent by CPU
- Chapter 79 MPLS Overview
- Chapter 80 LDP
- Chapter 81 MPLS VPN
- Chapter 82 Public Network Access of MPLS VPN
- Chapter 83 SWITCH OPERATION
- Chapter 84 TROUBLE SHOOTING
- Chapter 85 APPENDEX A
- Chapter 86 GLOSSARY
- EC Declaration of Conformity
80-15
downstream LSR, and specifies for which FEC this label request is.
(2) The downstream receiving the label request message will save this message, finds the
corresponding FEC next-hop according to the local route table and then sends a label request
message to its downstream.
(3) When the label request message reaches the destination router or the egress router of the MPLS
network, if the router has available labels, and judges the label request messages as legal, it will
distribute a label for the FEC, and send a label mapping message containing the label information to
its upstream;
(4) The LSR receiving the label mapping message will check the state of label request messages saved
locally. If there is a corresponding label request message of a FEC label mapping message in the
data base, LSR will distribute a label for the FEC, and add a new entry in its LFIB, and then send the
label mapping information to its upstream.
(5) When the ingress LSR receives a label mapping message, it also should add a corresponding entry
in its LFIB, and thus finish the creation of LSP.
Cancel the session
LDP maintains adjacency by checking Hello messages. It also maintains session by checking Keepalive
messages. If there is no Keepalive message received within a certain period of time, the LDP session will
close the connection.
Each LDP session can include one or more Hello adjacencies. LDP maintains Hello adjacency via periodical
Hello messages. If there is no LDP Discovery Hello message received within a certain period of time, the LDP
session will close the Hello connection. When closing the last Hello adjacency in the LDP session, LDP will
send notification messages, and close the transmission connection.
80.1.5 LDP Loop Detection
Creating LSP in the MPLS domain also needs to prevent loops. The LDP loop detection mechanism can
detect LSP loops and avoid them.
To detect loops in the MPLS domain, all LSRs should be enabling the loop detection. But when establishing
LDP sessions, the configurations of loop detection on the two parties don’t have to be the same.
There are two LDP loop detection modes:
The maximum hop count
It is the number of LSR passed by the label messages (including label mapping and label request). When LSR
transmits label information with the hop-count parameter, it will first increase the hop count by 1. When the
hop count reaches the configured maximum value, it means that a loop exists, and the LSP creation will fail. If
the hop count is 0, it means the hop count is unknown. The hop count of label messages is always 0. The
default maximum hop count is 255.
Path Vector
It is used to record the path information in label mapping or label request messages. At each hop, the LSP
checks whether its LSR ID is in the record. The following two conditions mean the existence of a loop and the
failure of the LSP creation.
There is a record of this LSR in the path vector record;