User Manual
Table Of Contents
- Chapter 1 INTRODUCTION
- Chapter 2 INSTALLATION
- Chapter 3 Switch Management
- Chapter 4 Basic Switch Configuration
- Chapter 5 File System Operations
- Chapter 6 Cluster Configuration
- Chapter 7 Port Configuration
- Chapter 8 Port Isolation Function Configuration
- Chapter 9 Port Loopback Detection Function Configuration
- Chapter 10 ULDP Function Configuration
- Chapter 11 LLDP Function Operation Configuration
- Chapter 12 Port Channel Configuration
- Chapter 13 Jumbo Configuration
- Chapter 14 EFM OAM Configuration
- Chapter 15 VLAN Configuration
- Chapter 16 MAC Table Configuration
- Chapter 17 MSTP Configuration
- Chapter 18 QoS Configuration
- Chapter 19 Flow-based Redirection
- Chapter 20 Egress QoS Configuration
- Chapter 21 Flexible Q-in-Q Configuration
- Chapter 22 Layer 3 Forward Configuration
- Chapter 23 ARP Scanning Prevention Function Configuration
- Chapter 24 Prevent ARP, ND Spoofing Configuration
- Chapter 25 ARP GUARD Configuration
- Chapter 26 ARP Local Proxy Configuration
- Chapter 27 Gratuitous ARP Configuration
- Chapter 28 Keepalive Gateway Configuration
- Chapter 29 DHCP Configuration
- Chapter 30 DHCPv6 Configuration
- Chapter 31 DHCP option 82 Configuration
- Chapter 32 DHCPv6 option37, 38
- Chapter 33 DHCP Snooping Configuration
- Chapter 34 Routing Protocol Overview
- Chapter 35 Static Route
- Chapter 36 RIP
- Chapter 37 RIPng
- Chapter 38 OSPF
- Chapter 39 OSPFv3
- Chapter 40 BGP- 40.1 Introduction to BGP
- 40.2 BGP Configuration Task List
- 40.3 Configuration Examples of BGP- 40.3.1 Examples 1: configure BGP neighbor
- 40.3.2 Examples 2: configure BGP aggregation
- 40.3.3 Examples 3: configure BGP community attributes
- 40.3.4 Examples 4: configure BGP confederation
- 40.3.5 Examples 5: configure BGP route reflector
- 40.3.6 Examples 6: configure MED of BGP
- 40.3.7 Examples 7: example of BGP VPN
 
- 40.4 BGP Troubleshooting
 
- Chapter 41 MBGP4+
- Chapter 42 Black Hole Routing Manual
- Chapter 43 GRE Tunnel Configuration
- Chapter 44 ECMP Configuration
- Chapter 45 BFD
- Chapter 46 BGP GR
- Chapter 47 OSPF GR
- Chapter 48 IPv4 Multicast Protocol- 48.1 IPv4 Multicast Protocol Overview
- 48.2 PIM-DM
- 48.3 PIM-SM
- 48.4 MSDP Configuration- 48.4.1 Introduction to MSDP
- 48.4.2 Brief Introduction to MSDP Configuration Tasks
- 48.4.3 Configuration of MSDP Basic Function
- 48.4.4 Configuration of MSDP Entities
- 48.4.5 Configuration of Delivery of MSDP Packet
- 48.4.6 Configuration of Parameters of SA-cache
- 48.4.7 MSDP Configuration Examples
- 48.4.8 MSDP Troubleshooting
 
- 48.5 ANYCAST RP Configuration
- 48.6 PIM-SSM
- 48.7 DVMRP
- 48.8 DCSCM
- 48.9 IGMP
- 48.10 IGMP Snooping
- 48.11 IGMP Proxy Configuration
 
- Chapter 49 IPv6 Multicast Protocol
- Chapter 50 Multicast VLAN
- Chapter 51 ACL Configuration
- Chapter 52 802.1x Configuration- 52.1 Introduction to 802.1x
- 52.2 802.1x Configuration Task List
- 52.3 802.1x Application Example
- 52.4 802.1x Troubleshooting
 
- Chapter 53 The Number Limitation Function of Port, MAC in VLAN and IP Configuration- 53.1 Introduction to the Number Limitation Function of Port, MAC in VLAN and IP
- 53.2 The Number Limitation Function of Port, MAC in VLAN and IP Configuration Task Sequence
- 53.3 The Number Limitation Function of Port, MAC in VLAN and IP Typical Examples
- 53.4 The Number Limitation Function of Port, MAC in VLAN and IP Troubleshooting Help
 
- Chapter 54 Operational Configuration of AM Function
- Chapter 55 TACACS+ Configuration
- Chapter 56 RADIUS Configuration
- Chapter 57 SSL Configuration
- Chapter 58 IPv6 Security RA Configuration
- Chapter 59 VLAN-ACL Configuration
- Chapter 60 MAB Configuration
- Chapter 61 PPPoE Intermediate Agent Configuration
- Chapter 62 SAVI Configuration
- Chapter 63 Web Portal Configuration
- Chapter 64 VRRP Configuration
- Chapter 65 IPv6 VRRPv3 Configuration
- Chapter 66 MRPP Configuration
- Chapter 67 ULPP Configuration
- Chapter 68 ULSM Configuration
- Chapter 69 Mirror Configuration
- Chapter 70 RSPAN Configuration
- Chapter 71 sFlow Configuration
- Chapter 72 SNTP Configuration
- Chapter 73 NTP Function Configuration
- Chapter 74 DNSv4/v6 Configuration
- Chapter 75 Summer Time Configuration
- Chapter 76 Monitor and Debug
- Chapter 77 Reload Switch after Specified Time
- Chapter 78 Debugging and Diagnosis for Packets Received and Sent by CPU
- Chapter 79 MPLS Overview
- Chapter 80 LDP
- Chapter 81 MPLS VPN
- Chapter 82 Public Network Access of MPLS VPN
- Chapter 83 VSF
- Chapter 84 SWITCH OPERATION
- Chapter 85 TROUBLESHOOTING
- Chapter 86 APPENDIX A
- Chapter 87 GLOSSARY
48-8 
48.2.4 PIM-DM Troubleshooting 
In configuring and using PIM-DM Protocol, PIM-DM Protocol might not operate normally caused by physical 
connection or incorrect configuration. Therefore, the user should pay attention to the following issues: 
  To assure that physical connection is correct 
  To assure the Protocol of Interface and Link is UP (use show interface command) 
  To assure PIM Protocol is enabled in Global Mode (use ipv6 pim multicast-routing ) 
  Enable PIM-DM Protocol on the interface (use ipv6 pim dense-mode command) 
  Multicast  Protocol  requires  RPF  Check  using Unicast  routing; therefore  the  correctness  of  Unicast 
routing must be assured beforehand 
If all attempts including Check are made but the problems on PIM-DM can’t be solved yet, then use debug 
commands  such  as  debug  pim  please,  and  then  copy  DEBUG  information  in  3  minutes  and  send  to 
Technology Service Center. 
48.3 PIM-SM 
48.3.1 Introduction to PIM-SM 
PIM-SM(Protocol Independent Multicast, Sparse Mode)is Protocol Independent Multicast Sparse Mode. It is 
a Multicast Routing  Protocol in  Sparse  Mode and mainly  used  in  big  scale  network  with  group  members 
distributed relatively sparse and wide-spread. Unlike the Flooding & Prune of Dense Mode, PIM-SM Protocol 
assumes no host needs receiving Multicast data packets. PIM-SM router transmits Multicast Data Packets to 
a host only if it presents explicit requirement. 
By setting RP (Rendezvous Point) and BSR (Bootstrap Router), PIM-SM announce Multicast packet to all 
PIM-SM  routers  and  establish  RPT  (RP-rooted  shared  tree)  based  on  RP  using  Join/Prune  message  of 
routers. Consequently the network bandwidth occupied by data packets and message control is cut down and 
the transaction cost  of routers decreases.  Multicast  data get  to the network segment  where the  Multicast 
group  members  are  located along  the  shared  tree  flow.  When  the  data  traffic  reaches  a  certain  amount, 
Multicast data stream can be switched to the shortest path tree SPT based on the source to reduce network 
delay. PIM-SM  doesn’t  rely  on  any  specific  Unicast  Routing  Protocol  but  make  RPF  Check  using  existing 
Unicast routing table. 
1. PIM-SM Working Principle 
The central working processes of PIM-SM are: Neighbor Discovery, Generation of RP Shared Tree (RPT), 
Multicast source registration, SPT Switch, etc. We won’t describe the mechanism of Neighbor Discovery here 
since it is same as that of PIM-DM. 
(1)  Generation of RP Shared Tree (RPT) 
When a host joins a Multicast Group G, the leaf router that is connected to this host directly finds out 
through  IGMP  message  that  there  is  a  receiver  of  Multicast  Group  G,  then  it  works  out  the 
corresponding Rendezvous Point RP for Multicast Group G, and send join message to upper lever 
nodes in RP direction. Every router on the way from the leaf router to RP will generate a (*, G) table 
entry, where a message from any source to Multicast group applies to this entry. When RP receives 
the message sent to Multicast Group G, the message will get to the leaf router along the set up path 










