User's Manual
Table Of Contents
- Chapter 1 INTRODUCTION
- Chapter 2 INSTALLATION
- Chapter 3 witch Management
- Chapter 4 Basic Switch Configuration
- Chapter 5 File System Operations
- Chapter 6 Cluster Configuration
- Chapter 7 USB Function Configuration
- Chapter 8 Device Management
- Chapter 9 Port Configuration
- Chapter 10 Port Isolation Function Configuration
- Chapter 11 Port Loopback Detection Function Configuration
- Chapter 12 ULDP Function Configuration
- Chapter 13 LLDP Function Operation Configuration
- Chapter 14 Port Channel Configuration
- Chapter 15 MTU Configuration
- Chapter 16 bpdu-tunnel-protocol Configuration
- Chapter 17 DDM Configuration
- Chapter 18 EFM OAM Configuration
- Chapter 19 LLDP-MED
- Chapter 20 PORT SECURITY
- Chapter 21 QSFP+ Port Split and Combination Configuration
- Chapter 22 VLAN Configuration
- Chapter 23 MAC Table Configuration
- Chapter 24 MSTP Configuration
- Chapter 25 QoS Configuration
- Chapter 26 PBR Configuration
- Chapter 27 IPv6 PBR Configuration
- Chapter 28 Flow-based Redirection
- Chapter 29 Egress QoS Configuration
- Chapter 30 Flexible QinQ Configuration
- Chapter 31 Layer 3 Management Configuration
- Chapter 32 ARP Scanning Prevention Function Configuration
- Chapter 33 Prevent ARP, ND Spoofing Configuration
- Chapter 34 ARP GUARD Configuration
- Chapter 35 Gratuitous ARP Configuration
- Chapter 36 DHCP Configuration
- Chapter 37 DHCPv6 Configuration
- Chapter 38 DHCP option 82 Configuration
- Chapter 39 DHCPv6 option37, 38
- Chapter 40 DHCP Snooping Configuration
- Chapter 41 DHCP option 60 and option 43
- Chapter 42 IPv4 Multicast Protocol
- Chapter 43 IPv6 Multicast Protocol
- Chapter 44 Multicast VLAN
- Chapter 45 ACL Configuration
- Chapter 46 Self-defined ACL Configuration
- Chapter 47 802.1x Configuration
- 47.1 Introduction to 802.1x
- 47.2 802.1x Configuration Task List
- 47.3 802.1x Application Example
- 47.4 802.1x Troubleshooting
- Chapter 48 The Number Limitation Function of MAC and IP in Port, VLAN Configuration
- 48.1 Introduction to the Number Limitation Function of MAC and IP in Port, VLAN
- 48.2 The Number Limitation Function of MAC and IP in Port, VLAN Configuration Task Sequence
- 48.3 The Number Limitation Function of MAC and IP in Port, VLAN Typical Examples
- 48.4 The Number Limitation Function of MAC and IP in Port, VLAN Troubleshooting Help
- Chapter 49 Operational Configuration of AM Function
- Chapter 50 Security Feature Configuration
- 50.1 Introduction to Security Feature
- 50.2 Security Feature Configuration
- 50.2.1 Prevent IP Spoofing Function Configuration Task Sequence
- 50.2.2 Prevent TCP Unauthorized Label Attack Function Configuration Task Sequence
- 50.2.3 Anti Port Cheat Function Configuration Task Sequence
- 50.2.4 Prevent TCP Fragment Attack Function Configuration Task Sequence
- 50.2.5 Prevent ICMP Fragment Attack Function Configuration Task Sequence
- 50.3 Security Feature Example
- Chapter 51 TACACS+ Configuration
- Chapter 52 RADIUS Configuration
- Chapter 53 SSL Configuration
- Chapter 54 IPv6 Security RA Configuration
- Chapter 55 VLAN-ACL Configuration
- Chapter 56 MAB Configuration
- Chapter 57 PPPoE Intermediate Agent Configuration
- Chapter 58 SAVI Configuration
- Chapter 59 Captive Portal Authentication
- 59.1 Captive Portal Authentication Configuration
- 59.2 Accounting Function Configuration
- 59.3 Free-resource Configuration
- 59.4 Authentication White-list Configuration
- 59.5 Automatic Page Pushing after Successful Authentication (it is not supported currently)
- 59.6 http-redirect-filter
- 59.7 Portal Non-perception
- 59.8 Portal Escaping
- Chapter 60 VRRP Configuration
- Chapter 61 IPv6 VRRPv3 Configuration
- Chapter 62 MRPP Configuration
- Chapter 63 ULPP Configuration
- Chapter 64 ULSM Configuration
- Chapter 65 Mirror Configuration
- Chapter 66 RSPAN Configuration
- Chapter 67 SNTP Configuration
- Chapter 68 NTP Function Configuration
- Chapter 69 DNSv4/v6 Configuration
- Chapter 70 Summer Time Configuration
- Chapter 71 Monitor and Debug
- Chapter 72 Reload Switch after Specified Time
- Chapter 73 Debugging and Diagnosis for Packets Received and Sent by CPU
- Chapter 74 VSF
- Chapter 75 SWITCH OPERATION
- Chapter 76 TROUBLESHOOTING
- Chapter 77 APPENDIX A
- Chapter 78 GLOSSARY
Configuration Guide of XGS-5240-Series
32-1
Chapter 32 ARP Scanning Prevention
Function Configuration
32.1 Introduction to ARP Scanning Prevention
Function
ARP scanning is a common method of network attack. In order to detect all the active
hosts in a network segment, the attack source will broadcast lots of ARP messages in the
segment, which will take up a large part of the bandwidth of the network. It might even do
large-traffic-attack in the network via fake ARP messages to collapse of the network by
exhausting the bandwidth. Usually ARP scanning is just a preface of other more dangerous
attack methods, such as automatic virus infection or the ensuing port scanning, vulnerability
scanning aiming at stealing information, distorted message attack, and DOS attack, etc.
Since ARP scanning threatens the security and stability of the network with great danger,
so it is very significant to prevent it. Switch provides a complete resolution to prevent ARP
scanning: if there is any host or port with ARP scanning features is found in the segment, the
switch will cut off the attack source to ensure the security of the network.
There are two methods to prevent ARP scanning: port-based and IP-based. The
port-based ARP scanning will count the number to ARP messages received from a port in a
certain time range, if the number is larger than a preset threshold, this port will be “down”. The
IP-based ARP scanning rate-limiting and isolate two levels threshold, when it above level-1
threshold (the limited threshold), the hardware transmits the ARP packet (including ARP
request and reply) of this host normally, and only limit the CPU rate. And produce trap warning
to notify administrator that there may be attacked; when packets rate is level-2 threshold
(isolation threshold), it will take action, record log and produce trap warning. The level-1 limited
threshold and level-2 isolate threshold will be open when enable IP-based ARP scanning in
global mode, level-1 threshold will take effect until it lower than level-2 threshold. The two kind
of ARP scanning prevention can be start using at the same time, after port is banned, it can
recover the state by configure the function of automatic recovery. After IP is banned, it can be
automatic recovery when the rate of received arp packets is lower than level-2 threshold.
To improve the effect of the switch, users can configure trusted ports and IP, the ARP
messages from which will not be checked by the switch. Thus the load of the switch can be
effectively decreased.