SGS-6341-Series User Manual
Table Of Contents
- Chapter 1 INTRODUCTION
- Chapter 2 INSTALLATION
- Chapter 3 Switch Management
- Chapter 4 Basic Switch Configuration
- Chapter 5 File System Operations
- Chapter 6 Cluster Configuration
- Chapter 7 Port Configuration
- Chapter 8 Port Isolation Function Configuration
- Chapter 9 Port Loopback Detection Function Configuration
- Chapter 10 ULDP Function Configuration
- Chapter 11 LLDP Function Operation Configuration
- Chapter 12 Port Channel Configuration
- Chapter 13 MTU Configuration
- Chapter 14 EFM OAM Configuration
- Chapter 15 PORT SECURITY
- Chapter 16 DDM Configuration
- Chapter 17 LLDP-MED
- Chapter 18 bpdu-tunnel Configuration
- Chapter 19 EEE Energy-saving Configuration
- Chapter 20 VLAN Configuration
- Chapter 21 MAC Table Configuration
- Chapter 22 MSTP Configuration
- Chapter 23 QoS Configuration
- Chapter 24 Flow-based Redirection
- Chapter 25 Flexible Q-in-Q Configuration
- Chapter 26 Layer 3 Management Configuration
- Chapter 27 ARP Scanning Prevention Function Configuration
- Chapter 28 Prevent ARP Spoofing Configuration
- Chapter 29 ARP GUARD Configuration
- Chapter 30 Gratuitous ARP Configuration
- Chapter 31 DHCP Configuration
- Chapter 32 DHCPv6 Configuration
- Chapter 33 DHCP Option 82 Configuration
- Chapter 34 DHCP Option 60 and option 43
- Chapter 35 DHCPv6 Options 37, 38
- Chapter 36 DHCP Snooping Configuration
- Chapter 37 DHCP Snooping Option 82 Configuration
- Chapter 38 IPv4 Multicast Protocol
- Chapter 39 IPv6 Multicast Protocol
- Chapter 40 Multicast VLAN
- Chapter 41 ACL Configuration
- Chapter 42 802.1x Configuration
- 42.1 Introduction to 802.1x
- 42.2 802.1x Configuration Task List
- 42.3 802.1x Application Example
- 42.4 802.1x Troubleshooting
- Chapter 43 The Number Limitation Function of MAC and IP in Port, VLAN Configuration
- Chapter 44 Operational Configuration of AM Function
- Chapter 45 Security Feature Configuration
- 45.1 Introduction to Security Feature
- 45.2 Security Feature Configuration
- 45.2.1 Prevent IP Spoofing Function Configuration Task Sequence
- 45.2.2 Prevent TCP Unauthorized Label Attack Function Configuration Task Sequence
- 45.2.3 Anti Port Cheat Function Configuration Task Sequence
- 45.2.4 Prevent TCP Fragment Attack Function Configuration Task Sequence
- 45.2.5 Prevent ICMP Fragment Attack Function Configuration Task Sequence
- 45.3 Security Feature Example
- Chapter 46 TACACS+ Configuration
- Chapter 47 RADIUS Configuration
- Chapter 48 SSL Configuration
- Chapter 49 IPv6 Security RA Configuration
- Chapter 50 MAB Configuration
- Chapter 51 PPPoE Intermediate Agent Configuration
- Chapter 52 Web Portal Configuration
- Chapter 53 VLAN-ACL Configuration
- Chapter 54 SAVI Configuration
- Chapter 55 MRPP Configuration
- Chapter 56 ULPP Configuration
- Chapter 57 ULSM Configuration
- Chapter 58 Mirror Configuration
- Chapter 59 sFlow Configuration
- Chapter 60 RSPAN Configuration
- Chapter 61 ERSPAN
- Chapter 62 SNTP Configuration
- Chapter 63 NTP Function Configuration
- Chapter 64 Summer Time Configuration
- Chapter 65 DNSv4/v6 Configuration
- Chapter 66 Monitor and Debug
- Chapter 67 Reload Switch after Specified Time
- Chapter 68 Debugging and Diagnosis for Packets Received and Sent by CPU
- Chapter 69 Dying Gasp Configuration
- Chapter 70 PoE Configuration
59-34
Chapter 59 sFlow Configuration
59.1 Introduction to sFlow
The sFlow (RFC 3176) is a protocol based on standard network export and used on monitoring the network
traffic information developed by InMon Company. The monitored switch or router sends date to the client
analyzer through its main operations such as sampling and statistic, then the analyzer will analyze according
to the user requirements so as to monitor the network.
A sFlow monitor system includes: sFlow proxy, central data collector and sFlow analyzer. The sFlow proxy
collects data from the switch using sampling technology. The sFlow collector is for formatting the sample data
statistic which is to be forwarded to the sFlow analyzer which will analyze the sample data and perform
corresponding measure according to the result. Our switch here acts as the proxy and central data collector in
the sFlow system. We have achieved data sampling and statistic targeting physical port.
Our data sample includes the IPv4 and IPv6 packets. Extensions of other types are not supported so far. As
for non IPv4 and IPv6 packet, the unify HEADER mode will be adopted following the requirements in
RFC3176, copying the head information of the packet based on analyzing the type of its protocol.
The latest sFlow protocol presented by InMon Company is version 5. Since it is version 4 which is realized in
the RFC3176, version conflict might exist in some case such as the structure and the packet format. This is
because version 5 has not become the official protocol, so, in order to be compatible with current applications,
we will continue to follow the RFC3176.
59.2 sFlow Configuration Task List
1. Configure sFlow Collector address
Command Explanation
Global and Port Mode
sflow destination <collector-address>
[<collector-port>]
no sflow destination
Configure the IP address and port number of
the host in which the sFlow analysis software
is installed. As for the ports, if IP address is
configured on the port, the port configuration
will be applied, or else will be applied the
global configuration. The “no sflow
destination” command restores to the default
port value and deletes the IP address.
User’s Manual of SGS-6341 series