IGS-6325-Series User Manual
Table Of Contents
- 1. INTRODUCTION
- 2. INSTALLATION
- 3. SWITCH MANAGEMENT
- 4. WEB CONFIGURATION
- 4.1 Main Web page
- 4.2 System
- 4.2.1 Management
- 4.2.1.1 System Information
- 4.2.1.2 IP Configuration
- 4.2.1.3 IP Status
- 4.2.1.4 Users Configuration
- 4.2.1.5 Privilege Levels
- 4.2.1.6 NTP Configuration
- 4.2.1.6.1 System Time Correction Manually
- 4.2.1.7 Time Configuration
- 4.2.1.8 UPnP
- 4.2.1.9 DHCP Relay
- 4.2.1.10 DHCP Relay Statistics
- 4.2.1.11 CPU Load
- 4.2.1.12 System Log
- 4.2.1.13 Detailed Log
- 4.2.1.14 Remote Syslog
- 4.2.1.15 SMTP Configuration
- 4.2.1.16 Fault Alarm
- 4.2.1.17 Digital Input/Output
- 4.2.2 Simple Network Management Protocol
- 4.2.3 RMON
- 4.2.4 DHCP server
- 4.2.5 Industrial Protocol
- 4.2.1 Management
- 4.3 Switching
- 4.3.1 Port Management
- 4.3.2 Link Aggregation
- 4.3.3 VLAN
- 4.3.3.1 VLAN Overview
- 4.3.3.2 IEEE 802.1Q VLAN
- 4.3.3.3 VLAN Port Configuration
- 4.3.3.4 VLAN Membership Status
- 4.3.3.5 VLAN Port Status
- 4.3.3.6 Private VLAN
- 4.3.3.7 Port Isolation
- 4.3.3.8 VLAN setting example:
- 4.3.3.8.1 Two Separate 802.1Q VLANs
- 4.3.3.8.2 VLAN Trunking between two 802.1Q aware switches
- 4.3.3.8.3 Port Isolate
- 4.3.3.9 MAC-based VLAN
- 4.3.3.10 IP Subnet-based VLAN Membership Configuration
- 4.3.3.11 Protocol-based VLAN
- 4.3.3.12 Protocol-based VLAN Membership
- 4.3.4 Spanning Tree Protocol
- 4.3.5 Multicast
- 4.3.6 MLD Snooping
- 4.3.7 MVR (Multicast VLAN Registration)
- 4.3.8 LLDP
- 4.3.9 MAC Address Table
- 4.3.10 Loop Protection
- 4.3.11 UDLD
- 4.3.12 GVRP
- 4.3.13 PTP
- 4.3.14 Link OAM
- 4.4 Quality of Service
- 4.5 Security
- 4.6 Ring
- 4.7 Maintenance
- 4.8 Power over Ethernet
- 4.9 ONVIF
- 4.10 Routing
- 4.10.1 IP Configuration
- 4.10.2 IP Status
- 4.10.3 Routing Information Base
- 4.10.4 OSPF
- 4.10.4.1 Global Configuration
- 4.10.4.2 Network Area
- 4.10.4.3 Passive Interface
- 4.10.4.4 Stub Area
- 4.10.4.5 Area Authentication
- 4.10.4.6 Area Range
- 4.10.4.7 Interface Configuration
- 4.10.4.8 Virtual Link
- 4.10.4.9 Global Status
- 4.10.4.10 Area Status
- 4.10.4.11 Neighbor Status
- 4.10.4.12 Interface Status
- 4.10.4.13 Configuration Example of OSPFv4
- 5. SWITCH OPERATION
- 6. TROUBLESHOOTING
- APPENDIX A: Networking Connection
- APPENDIX B : GLOSSARY
User’s Manual of IGS-6325 series
481
IMAP is the protocol that IMAP clients use to communicate with the servers, and SMTP is the protocol used to
transport mail to an IMAP server.
The current version of the Internet Message Access Protocol is IMAP4. It is similar to Post Office Protocol
version 3 (POP3), but offers additional and more complex features. For example, the IMAP4 protocol leaves
your email messages on the server rather than downloading them to your computer. If you wish to remove
your messages from the server, you must use your mail client to generate local folders, copy messages to
your local hard drive, and then delete and expunge the messages from the server.
IP
IP is an acronym for Internet Protocol. It is a protocol used for communicating data across a internet network.
IP is a "best effort" system, which means that no packet of information sent over it is assured to reach its
destination in the same condition it was sent. Each device connected to a Local Area Network (LAN) or Wide
Area Network (WAN) is given an Internet Protocol address, and this IP address is used to identify the device
uniquely among all other devices connected to the extended network.
The current version of the Internet protocol is IPv4, which has 32-bits Internet Protocol addresses allowing for
in excess of four billion unique addresses. This number is reduced drastically by the practice of webmasters
taking addresses in large blocks, the bulk of which remain unused. There is a rather substantial movement to
adopt a new version of the Internet Protocol, IPv6, which would have 128-bits Internet Protocol addresses.
This number can be represented roughly by a three with thirty-nine zeroes after it. However, IPv4 is still the
protocol of choice for most of the Internet.
IPMC
IPMC is an acronym for IP MultiCast.
IP Source Guard
IP Source Guard is a secure feature used to restrict IP traffic on DHCP snooping untrusted ports by filtering
traffic based on the DHCP Snooping Table or manually configured IP Source Bindings. It helps prevent IP
spoofing attacks when a host tries to spoof and use the IP address of another host.
L
LACP
LACP is an IEEE 802.3ad standard protocol. The Link Aggregation Control Protocol allows bundling several physical
ports together to form a single logical port.
LLDP
LLDP is an IEEE 802.1ab standard protocol.
The Link Layer Discovery Protocol(LLDP) specified in this standard allows stations attached to an IEEE 802 LAN to
advertise, to other stations attached to the same IEEE 802 LAN, the major capabilities provided by the system