TDA8950 2 × 150 W class-D power amplifier Rev. 01 — 9 September 2008 Preliminary data sheet 1. General description The TDA8950 is a high efficiency class-D audio power amplifier. The typical output power is 2 × 150 W with a speaker load impedance of 4 Ω. The TDA8950 is available in the HSOP24 power package and DBS23P power package. The amplifier operates over a wide supply voltage range from ±12.5 V to ±40 V and consumes a low quiescent current. 2.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 4. Quick reference data Table 1. Quick reference data Symbol Parameter Conditions Min Typ Max Unit ±12.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 6. Block diagram VDDA 3 (20) IN1M IN1P n.c. OSC MODE SGND n.c.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 7. Pinning information 7.1 Pinning OSC 1 IN1P 2 IN1M 3 n.c. 4 n.c. 5 n.c. 6 PROT 7 VDDP1 8 BOOT1 9 OUT1 10 VSSP1 11 VSSD 24 1 VSSA STABI 12 VDDP2 23 2 SGND VSSP2 13 BOOT2 22 3 VDDA OUT2 21 4 IN2M BOOT2 15 VSSP2 20 5 IN2P VDDP2 16 n.c. 19 6 MODE 7 OSC VSSA 18 8 IN1P SGND 19 9 IN1M VDDA 20 STABI 18 TDA8950TH VSSP1 17 OUT1 16 TDA8950J OUT2 14 VSSD 17 BOOT1 15 10 n.c. VDDP1 14 11 n.c.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 7.2 Pin description Table 3.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier The TDA8950 one-chip class-D amplifier contains high power switches, drivers, timing and handshaking between the power switches and some control logic. Also an advanced protection strategy is implemented which contains several voltage protections, temperature protections and a maximum current protection to secure maximum system robustness.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier In order to fully charge the coupling capacitors at the inputs, the amplifier will remain automatically in the Mute mode before switching to the Operating mode. A complete overview of the start-up timing is given in Figure 5. audio output (1) modulated PWM VMODE 50 % duty cycle operating > 4.2 V mute 2.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 8.2 Pulse width modulation frequency The output signal of the amplifier is a PWM signal with a carrier frequency that typically lies between 300 kHz and 400 kHz. Using a 2nd-order LC demodulation filter in the application results in an analog audio signal across the loudspeaker. The carrier frequency is determined by an external resistor ROSC, connected between pin OSC and pin VSSA.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier TFB is specified at the temperature value Tact(th_fold) where the closed loop voltage gain is reduced with 6 dB. The range of the TFB is: Tact(th_fold) − 5 °C < Tact(th_fold) < Tact(th_prot). For the TDA8950 the value of Tact(th_fold) is about +153 °C. For more details see: Table 7. 8.3.1.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier Should there be an impedance drop (e.g. due to dynamic behavior of the loudspeaker) the same protection will be activated. The maximum output current will again be limited to 9.2 A, but the amplifier will not switch-off completely (thus preventing audio holes from occurring). The result will be a clipping output signal. See Section 13.7 for more information on this maximum output current limiting feature. 8.3.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier Table 4. Overview of TDA8950 protections Protection name Complete shutdown Restart directly Restart after 100 ms Pin PROT detection TFB[1] N N N N OTP Y N Y N OCP Y[2] N[2] Y[2] Y WP N[3] Y N N UVP Y N Y N OVP Y N Y N UBP Y N Y N [1] Amplifier gain will depend on junction temperature and heatsink size. [2] Only complete shutdown of amplifier if short-circuit impedance is below threshold of 1 Ω.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 9. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Symbol Parameter Conditions Min Max Unit VP supply voltage non-operating mode; VDD − VSS - 90 V IORM repetitive peak output current maximum output current limiting 9.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 11. Static characteristics Table 7. Static characteristics VP = ±35 V; fosc = 345 kHz; Tamb = 25 °C; unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit Supply ±12.5 ±35 ±40 V 85 - 90 V undervoltage protection supply voltage VDD − VSS 20 - 25 V Iq(tot) total quiescent current - 50 75 mA Istb standby current - 480 600 µA [2] 0 - 6.0 V Standby mode [2][3] 0 - 0.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier slope is directly related to the time-constant of the RC network on the MODE pin VO (V) VO(offset)(on) Standby Mute On VO(offset)(mute) 0 0.8 2.2 3.0 4.2 5.5 VMODE (V) coa021 Fig 8. Behavior of mode selection pin MODE 12. Dynamic characteristics 12.1 Switching characteristics Table 8. Dynamic characteristics VP = ±35 V; Tamb = 25 °C; unless otherwise specified. Symbol Parameter Conditions Min Typ Max Unit ROSC = 30.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 12.2 Stereo and dual SE application characteristics Table 9. Dynamic characteristics VP = ±35 V; RL = 4 Ω; fi = 1 kHz; fosc = 345 kHz; RsL < 0.1 Ω[1]; Tamb = 25 °C; unless otherwise specified. Symbol Po Parameter Conditions Min Typ Max Unit output power L = 22 µH; C = 680 nF; Tj = 85 °C RL = 4 Ω; THD = 0.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 12.3 Mono BTL application characteristics Table 10. Dynamic characteristics VP = ±35 V; RL = 8 Ω; fi = 1 kHz; fosc = 345 kHz; RsL < 0.1 Ω [1]; Tamb = 25 °C; unless otherwise specified. Symbol Parameter Conditions output power Po Min Typ Max Unit THD = 10 %; VP = ±39 V - 340 - W THD = 10 %; VP = ±37 V - 300 - W L = 22 µH; C = 680 nF; Tj = 85 °C; RL = 8 Ω [2] THD = 0.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 13. Application information 13.1 Mono BTL application When using the power amplifier in a mono BTL application the inputs of both channels must be connected in parallel and the phase of one of the inputs must be inverted (see Figure 7). In principle the loudspeaker can be connected between the outputs of the two single-ended demodulation filters. 13.2 Pin MODE For pop noise-free start-up, an RC time-constant must be applied on pin MODE.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 13.3.2 Bridge-Tied Load (BTL) Maximum output power: P o ( 0.5% ) 2 RL ------------------------------------------------------------------ × 2V P × ( 1 – t min × 0.5 f osc ) R L + R DSon ( hs ) + R dson ( ls ) = -------------------------------------------------------------------------------------------------------------------------------------------------2R L (3) Maximum current internally limited to 9.2 A: 2V P × ( 1 – t min × 0.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 13.5 Noise Noise should be measured using a high order low-pass filter with a cut-off frequency of 20 kHz. The standard audio band pass filters, used in audio analyzers, do not suppress the residue of the carrier frequency sufficiently to ensure a reliable measurement of the audible noise.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier The audio signal has a crest factor of 10 (the ratio between peak power and average power (20 dB)), this means that the average output power is 1⁄10 of the peak power. In this case, the peak RMS output power level would be the 0.5 % THD level, i.e. 220 W. The average power would then be 1⁄10 × 220 W = 22 W. The dissipated power at an output power of 22 W is approximately 5 W.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 100 ms. The average dissipation will be low in this situation because of this low duty cycle. If the over current condition is removed the amplifier will remain in Operating mode after being restarted. In this way the TDA8950 amplifier is fully protected against short-circuit conditions while at the same time so-called audio holes, as a result of loudspeaker impedance drops, are eliminated. 13.
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx NXP Semiconductors TDA8950_1 VDDA 10 Ω SINGLE ENDED OUTPUT FILTER VALUES LOAD Llc Clc VDDP Cvddp 470 µ
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 13.10 Layout and grounding To obtain a high-level system performance, certain grounding techniques are essential. The input reference grounds have to be tied with their respective source grounds and must have separate tracks from the power ground tracks. This will prevent the large (output) signal currents from interfering with the small AC input signals.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 13.11 Curves measured in reference design 001aai422 10 THD (%) 1 (2) 10−1 (1) 10−2 (3) 10−3 10−2 10−1 1 10 102 103 Po (W) VP = ±35 V, 2 × 4 Ω SE configuration. (1) OUT2, fi = 6 kHz (2) OUT2, fi = 1 kHz (3) OUT2, fi = 100 Hz Fig 12. THD as a function of output power, SE configuration with 2 × 4 Ω load 001aai700 10 THD (%) 1 (2) 10−1 (1) 10−2 (3) 10−3 10−2 10−1 1 10 102 103 Po (W) VP = ±35 V, 2 × 6 Ω SE configuration.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 001aai423 10 THD (%) 1 (1) 10−1 (2) 10−2 (3) 10−3 10−2 10−1 1 102 10 103 PO (W) VP = ±35 V, fosc = 350 kHz, 1 × 8 Ω BTL configuration. (1) fi = 6 kHz (2) fi = 1 kHz (3) fi = 100 Hz Fig 14. THD as a function of output power, BTL configuration with 1 × 8 Ω load 001aai424 10 THD (%) 1 10−1 (1) 10−2 (2) 10−3 10 102 103 104 fi (Hz) 105 VP = ±35 V, 2 × 4 Ω SE configuration. (1) OUT2, PO = 1 W (2) OUT2, PO = 10 W Fig 15.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 001aai701 10 THD (%) 1 10−1 (1) 10−2 (2) 10−3 10 102 103 104 fi (Hz) 105 VP = ±35 V, 2 × 6 Ω SE configuration. (1) OUT2, Po = 1 W (2) OUT2, Po = 10 W Fig 16. THD as a function of frequency, SE configuration with 2 × 6 Ω load 001aai702 10 THD (%) 1 10−1 (1) 10−2 (2) 10−3 10 102 103 104 f (Hz) 105 VP = ±35 V, 1 × 8 Ω BTL configuration (1) Po = 1 W (2) Po = 10 W Fig 17.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 001aai703 0 αcs (dB) −20 −40 −60 −80 −100 10 102 103 104 105 f (Hz) VP = ±35 V, 2 × 4 Ω SE configuration For OUT1 and OUT2 for both 1 W and 10 W. Fig 18. Channel separation as a function of frequency, SE configuration with 2 × 4 Ω load 001aai704 0 αcs (dB) −20 −40 −60 −80 −100 10 102 103 104 105 f (Hz) VP = ±35 V, 2 × 6 Ω SE configuration For OUT1 and OUT2 for both 1 W and 10 W. Fig 19.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier P (W) 001aai705 40 35 30 25 (1) 20 (2) 15 (3) 10 5 0 0 20 40 60 80 100 120 Po (W) VP = ±35 V, fi = 1 kHz, fosc = 325 kHz (1) 2 × 4 Ω SE configuration (2) 2 × 6 Ω SE configuration (3) 2 × 8 Ω SE configuration Fig 20.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier Po (W) 001aai707 200 180 160 140 120 (1) 100 (2) 80 (3) 60 (4) 40 20 0 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 Vp (V) fi = 1 kHz, fosc = 325 kHz Note: infinite heat sink used. (1) THD = 10 %, 4 Ω (2) THD = 0.5 %, 4 Ω; THD = 10 %, 6 Ω (3) THD = 0.5 %, 6 Ω; THD = 10 %, 8 Ω (4) THD = 0.5 %, 8 Ω Fig 22.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 001aai709 45 Gv(cl) (dB) 40 (1) 35 (2) 30 (3) (4) 25 20 102 10 103 104 105 f (Hz) VP = ±35 V, Vi = 100 mV, Rs = 0 Ω, Ci = 330 pF. (1) 1 × 8 Ω BTL configuration (2) 2 × 4 Ω SE configuration (3) 2 × 6 Ω SE configuration (4) 2 × 8 Ω SE configuration Fig 24.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 001aai711 −20 SVRR (dB) −40 −60 −80 (2) (1) −100 −120 (3) −140 102 10 103 104 106 fripple (Hz) Ripple on VSS, short on input pins. VP = ±35 V, RL = 4 Ω, Vripple = 2 V (p-p). (1) OUT2, mute (2) OUT2, on (3) OUT2, standby Fig 26. SVRR as function of ripple frequency 001aai712 10 Vo (V) 1 0.1 0.01 0.001 0.0001 (1) (2) 0.00001 0.000001 0 0.5 1 1.5 2 2.5 3 3.5 4 4.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 001aai713 −50 αmute (dB) −60 −70 (1) (2) (3) −80 −90 10 102 103 104 105 f (Hz) VP = ±35 V, Vi = 2 V (rms), fosc = 325 kHz (1) OUT2, 8 Ω (2) OUT2, 6 Ω (3) OUT2, 4 Ω Fig 28. Mute attenuation as function of frequency TDA8950_1 Preliminary data sheet © NXP B.V. 2008. All rights reserved. Rev.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 14. Package outline DBS23P: plastic DIL-bent-SIL power package; 23 leads (straight lead length 3.2 mm) SOT411-1 non-concave Dh x D Eh view B: mounting base side A2 d A5 A4 β E2 B j E E1 L2 L3 L1 L 1 e1 Z e 0 5 v M e2 m w M bp c Q 23 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A 2 mm A4 A5 bp c D (1) d D h E (1) e e1 e2 12.2 4.6 1.15 1.65 0.75 0.55 30.4 28.0 12 2.54 1.27 5.08 11.8 4.3 0.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier HSOP24: plastic, heatsink small outline package; 24 leads; low stand-off height SOT566-3 E D A x X c E2 y HE v M A D1 D2 12 1 pin 1 index Q A A2 E1 (A3) A4 θ Lp detail X 24 13 Z w M bp e 0 5 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT mm A A2 max. 3.5 3.5 3.2 A3 0.35 A4(1) D1 D2 E(2) E1 E2 e HE Lp Q +0.08 0.53 0.32 16.0 13.0 −0.04 0.40 0.23 15.8 12.6 1.1 0.9 11.1 10.9 6.2 5.8 2.9 2.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 15. Soldering of SMD packages This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note AN10365 “Surface mount reflow soldering description”. 15.1 Introduction to soldering Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 15.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier temperature maximum peak temperature = MSL limit, damage level minimum peak temperature = minimum soldering temperature peak temperature time 001aac844 MSL: Moisture Sensitivity Level Fig 31. Temperature profiles for large and small components For further information on temperature profiles, refer to Application Note AN10365 “Surface mount reflow soldering description”. 16. Revision history Table 13.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 17. Legal information 17.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification.
TDA8950 NXP Semiconductors 2 × 150 W class-D power amplifier 19. Contents 1 2 3 4 5 6 7 7.1 7.2 8 8.1 8.2 8.3 8.3.1 8.3.1.1 8.3.1.2 8.3.2 8.3.3 8.3.4 8.4 9 10 11 12 12.1 12.2 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Quick reference data . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . .