Propeller Manual
Table Of Contents
- Preface
- Chapter 1 : Introducing the Propeller Chip
- Concept
- Package Types
- Pin Descriptions
- Specifications
- Hardware Connections
- Boot Up Procedure
- Run-Time Procedure
- Shutdown Procedure
- Block Diagram
- Shared Resources
- System Clock
- Cogs (processors)
- Hub
- I/O Pins
- System Counter
- CLK Register
- Locks
- Main Memory
- Main RAM
- Main ROM
- Character Definitions
- Log and Anti-Log Tables
- Sine Table
- Boot Loader and Spin Interpreter
- Chapter 2 : Spin Language Reference
- Structure of Propeller Objects/Spin
- Categorical Listing of Propeller Spin Language
- Spin Language Elements
- ABORT
- BYTE
- BYTEFILL
- BYTEMOVE
- CASE
- CHIPVER
- CLKFREQ
- _CLKFREQ
- CLKMODE
- _CLKMODE
- CLKSET
- CNT
- COGID
- COGINIT
- COGNEW
- COGSTOP
- CON
- CONSTANT
- Constants (pre-defined)
- CTRA, CTRB
- DAT
- DIRA, DIRB
- FILE
- FLOAT
- _FREE
- FRQA, FRQB
- IF
- IFNOT
- INA, INB
- LOCKCLR
- LOCKNEW
- LOCKRET
- LOCKSET
- LONG
- LONGFILL
- LONGMOVE
- LOOKDOWN, LOOKDOWNZ
- LOOKUP, LOOKUPZ
- NEXT
- OBJ
- Operators
- Expression Workspace
- Operator Attributes
- Unary / Binary
- Normal / Assignment
- Constant and/or Variable Expression
- Level of Precedence
- Intermediate Assignments
- Constant Assignment ‘=’
- Variable Assignment ‘:=’
- Add ‘+’, ‘+=’
- Positive ‘+’ (unary form of Add)
- Subtract ‘-’, ‘-=’
- Negate ‘-’ (unary form of Subtract)
- Decrement, pre- or post- ‘- -’
- Increment, pre- or post- ‘+ +’
- Multiply, Return Low ‘*’, ‘*=’
- Multiply, Return High ‘**’, ‘**=’
- Divide ‘/’, ‘/=’
- Modulus ‘//’, ‘//=’
- Limit Minimum ‘#>’, ‘#>=’
- Limit Maximum ‘<#’, ‘<#=’
- Square Root ‘^^’
- Absolute Value ‘||’
- Sign-Extend 7 or Post-Clear ‘~’
- Sign-Extend 15 or Post-Set ‘~~’
- Shift Arithmetic Right ‘~>’, ‘~>=’
- Random ‘?’
- Bitwise Decode ‘|<’
- Bitwise Encode ‘>|’
- Bitwise Shift Left ‘<<’, ‘<<=’
- Bitwise Shift Right ‘>>’, ‘>>=’
- Bitwise Rotate Left ‘<-’, ‘<-=’
- Bitwise Rotate Right ‘->’, ‘->=’
- Bitwise Reverse ‘><’, ‘><=’
- Bitwise AND ‘&’, ‘&=’
- Bitwise OR ‘|’, ‘|=’
- Bitwise XOR ‘^’, ‘^=’
- Bitwise NOT ‘!’
- Boolean AND ‘AND’, ‘AND=’
- Boolean OR ‘OR’, ‘OR=’
- Boolean NOT ‘NOT’
- Boolean Is Equal ‘==’, ‘===’
- Boolean Is Not Equal ‘<>’, ‘<>=’
- Boolean Is Less Than ‘<’, ‘<=’
- Boolean Is Greater Than ‘>’, ‘>=’
- Boolean Is Equal or Less ‘=<’, ‘=<=’
- Boolean Is Equal or Greater ‘=>’, ‘=>=’
- Symbol Address ‘@’
- Object Address Plus Symbol ‘@@’
- OUTA, OUTB
- PAR
- PHSA, PHSB
- PRI
- PUB
- QUIT
- REBOOT
- REPEAT
- RESULT
- RETURN
- ROUND
- SPR
- _STACK
- STRCOMP
- STRING
- STRSIZE
- Symbols
- TRUNC
- VAR
- VCFG
- VSCL
- WAITCNT
- WAITPEQ
- WAITPNE
- WAITVID
- WORD
- WORDFILL
- WORDMOVE
- _XINFREQ
- Chapter 3 : Assembly Language Reference
- The Structure of Propeller Assembly
- Categorical Listing of Propeller Assembly Language
- Assembly Language Elements
- ABS
- ABSNEG
- ADD
- ADDABS
- ADDS
- ADDSX
- ADDX
- AND
- ANDN
- CALL
- CLKSET
- CMP
- CMPS
- CMPSUB
- CMPSX
- CMPX
- CNT
- COGID
- COGINIT
- COGSTOP
- Conditions ( IF_x )
- CTRA, CTRB
- DIRA, DIRB
- DJNZ
- Effects ( WC, WZ, WR, NR )
- FIT
- FRQA, FRQB
- HUBOP
- IF_x (Conditions)
- INA, INB
- JMP
- JMPRET
- LOCKCLR
- LOCKNEW
- LOCKRET
- LOCKSET
- MAX
- MAXS
- MIN
- MINS
- MOV
- MOVD
- MOVI
- MOVS
- MUXC
- MUXNC
- MUXNZ
- MUXZ
- NEG
- NEGC
- NEGNC
- NEGNZ
- NEGZ
- NOP
- NR
- Operators
- OR
- ORG
- OUTA, OUTB
- PAR
- PHSA, PHSB
- RCL
- RCR
- RDBYTE
- RDLONG
- RDWORD
- Registers
- RES
- RET
- REV
- ROL
- ROR
- SAR
- SHL
- SHR
- SUB
- SUBABS
- SUBS
- SUBSX
- SUBX
- SUMC
- SUMNC
- SUMZ
- Symbols
- TEST
- TESTN
- TJNZ
- TJZ
- VCFG
- VSCL
- WAITCNT
- WAITPEQ
- WAITPNE
- WAITVID
- WC
- WR
- WRBYTE
- WRLONG
- WRWORD
- WZ
- XOR
- Appendix A: Reserved Word List
- Appendix B: Math Samples and Function Tables
- Index
1: Introducing the Propeller Chip
The character pairs are merged row-by-row such that each character's 16 horizontal pixels are
spaced apart and interleaved with their neighbors' so that the even character takes bits 0, 2, 4,
...30, and the odd character takes bits 1, 3, 5, ...31. The leftmost pixels are in the lowest bits,
while the rightmost pixels are in the highest bits, as shown in Figure 1-7. This forms a long (4
bytes) for each row of pixels in the character pair. 32 such longs, building from the
character’s top row down to the bottom, make up the complete merged-pair definition. The
definitions are encoded in this manner so that a cog’s video hardware can handle the merged
longs directly, using color selection to display either the even or the odd character. It also has
the advantage of allowing run-time character pairs (see next paragraph) that are four-color
characters used to draw beveled buttons, lines and focus indicators.
Figure 1-7: Propeller Character Interleaving
Some character codes have inescapable meanings, such as 9 for Tab, 10 for Line Feed, and 13
for Carriage Return. These character codes invoke actions and do not equate to static
character definitions. For this reason, their character definitions have been used for special
four-color characters. These four-color characters are used for drawing 3-D box edges at run
time and are implemented as 16 x 16 pixel cells, as opposed to the normal 16 x 32 pixel cells.
They occupy even-odd character pairs 0-1, 8-9, 10-11, and 12-13. Figure 1-8 shows an
example of a button with 3D beveled edges made from some of these characters.
Figure 1-8: Button
with 3-D Beveled
Edges
The Propeller Tool includes, and uses, the Parallax True Type
®
font which follows the design
of the Propeller Font embedded in the hardware. With this font, and the Propeller Tool, you
Propeller Manual v1.1 · Page 33