Datasheet
Table Of Contents
- Chapter 1 Device Overview
- Chapter 2 Pins and Connections
- Chapter 3 Modes of Operation
- Chapter 4 Memory
- 4.1 MC9S08DN60 Series Memory Map
- 4.2 Reset and Interrupt Vector Assignments
- 4.3 Register Addresses and Bit Assignments
- 4.4 RAM
- 4.5 Flash and EEPROM
- 4.5.1 Features
- 4.5.2 Program and Erase Times
- 4.5.3 Program and Erase Command Execution
- 4.5.4 Burst Program Execution
- 4.5.5 Sector Erase Abort
- 4.5.6 Access Errors
- 4.5.7 Block Protection
- 4.5.8 Vector Redirection
- 4.5.9 Security
- 4.5.10 EEPROM Mapping
- 4.5.11 Flash and EEPROM Registers and Control Bits
- 4.5.11.1 Flash and EEPROM Clock Divider Register (FCDIV)
- 4.5.11.2 Flash and EEPROM Options Register (FOPT and NVOPT)
- 4.5.11.3 Flash and EEPROM Configuration Register (FCNFG)
- 4.5.11.4 Flash and EEPROM Protection Register (FPROT and NVPROT)
- 4.5.11.5 Flash and EEPROM Status Register (FSTAT)
- 4.5.11.6 Flash and EEPROM Command Register (FCMD)
- Chapter 5 Resets, Interrupts, and General System Control
- 5.1 Introduction
- 5.2 Features
- 5.3 MCU Reset
- 5.4 Computer Operating Properly (COP) Watchdog
- 5.5 Interrupts
- 5.6 Low-Voltage Detect (LVD) System
- 5.7 MCLK Output
- 5.8 Reset, Interrupt, and System Control Registers and Control Bits
- 5.8.1 Interrupt Pin Request Status and Control Register (IRQSC)
- 5.8.2 System Reset Status Register (SRS)
- 5.8.3 System Background Debug Force Reset Register (SBDFR)
- 5.8.4 System Options Register 1 (SOPT1)
- 5.8.5 System Options Register 2 (SOPT2)
- 5.8.6 System Device Identification Register (SDIDH, SDIDL)
- 5.8.7 System Power Management Status and Control 1 Register (SPMSC1)
- 5.8.8 System Power Management Status and Control 2 Register (SPMSC2)
- Chapter 6 Parallel Input/Output Control
- 6.1 Port Data and Data Direction
- 6.2 Pull-up, Slew Rate, and Drive Strength
- 6.3 Pin Interrupts
- 6.4 Pin Behavior in Stop Modes
- 6.5 Parallel I/O and Pin Control Registers
- 6.5.1 Port A Registers
- 6.5.1.1 Port A Data Register (PTAD)
- 6.5.1.2 Port A Data Direction Register (PTADD)
- 6.5.1.3 Port A Pull Enable Register (PTAPE)
- 6.5.1.4 Port A Slew Rate Enable Register (PTASE)
- 6.5.1.5 Port A Drive Strength Selection Register (PTADS)
- 6.5.1.6 Port A Interrupt Status and Control Register (PTASC)
- 6.5.1.7 Port A Interrupt Pin Select Register (PTAPS)
- 6.5.1.8 Port A Interrupt Edge Select Register (PTAES)
- 6.5.2 Port B Registers
- 6.5.2.1 Port B Data Register (PTBD)
- 6.5.2.2 Port B Data Direction Register (PTBDD)
- 6.5.2.3 Port B Pull Enable Register (PTBPE)
- 6.5.2.4 Port B Slew Rate Enable Register (PTBSE)
- 6.5.2.5 Port B Drive Strength Selection Register (PTBDS)
- 6.5.2.6 Port B Interrupt Status and Control Register (PTBSC)
- 6.5.2.7 Port B Interrupt Pin Select Register (PTBPS)
- 6.5.2.8 Port B Interrupt Edge Select Register (PTBES)
- 6.5.3 Port C Registers
- 6.5.4 Port D Registers
- 6.5.4.1 Port D Data Register (PTDD)
- 6.5.4.2 Port D Data Direction Register (PTDDD)
- 6.5.4.3 Port D Pull Enable Register (PTDPE)
- 6.5.4.4 Port D Slew Rate Enable Register (PTDSE)
- 6.5.4.5 Port D Drive Strength Selection Register (PTDDS)
- 6.5.4.6 Port D Interrupt Status and Control Register (PTDSC)
- 6.5.4.7 Port D Interrupt Pin Select Register (PTDPS)
- 6.5.4.8 Port D Interrupt Edge Select Register (PTDES)
- 6.5.5 Port E Registers
- 6.5.6 Port F Registers
- 6.5.7 Port G Registers
- 6.5.1 Port A Registers
- Chapter 7 Central Processor Unit (S08CPUV3)
- 7.1 Introduction
- 7.2 Programmer’s Model and CPU Registers
- 7.3 Addressing Modes
- 7.4 Special Operations
- 7.5 HCS08 Instruction Set Summary
- Chapter 8 Multi-Purpose Clock Generator (S08MCGV1)
- 8.1 Introduction
- 8.2 External Signal Description
- 8.3 Register Definition
- 8.4 Functional Description
- 8.4.1 Operational Modes
- 8.4.1.1 FLL Engaged Internal (FEI)
- 8.4.1.2 FLL Engaged External (FEE)
- 8.4.1.3 FLL Bypassed Internal (FBI)
- 8.4.1.4 FLL Bypassed External (FBE)
- 8.4.1.5 PLL Engaged External (PEE)
- 8.4.1.6 PLL Bypassed External (PBE)
- 8.4.1.7 Bypassed Low Power Internal (BLPI)
- 8.4.1.8 Bypassed Low Power External (BLPE)
- 8.4.1.9 Stop
- 8.4.2 Mode Switching
- 8.4.3 Bus Frequency Divider
- 8.4.4 Low Power Bit Usage
- 8.4.5 Internal Reference Clock
- 8.4.6 External Reference Clock
- 8.4.7 Fixed Frequency Clock
- 8.4.1 Operational Modes
- 8.5 Initialization / Application Information
- 8.5.1 MCG Module Initialization Sequence
- 8.5.2 MCG Mode Switching
- 8.5.2.1 Example # 1: Moving from FEI to PEE Mode: External Crystal = 4 MHz, Bus Frequency = 8 MHz
- 8.5.2.2 Example # 2: Moving from PEE to BLPI Mode: External Crystal = 4 MHz, Bus Frequency =16 kHz
- 8.5.2.3 Example #3: Moving from BLPI to FEE Mode: External Crystal = 4 MHz, Bus Frequency = 16 MHz
- 8.5.2.4 Example # 4: Moving from FEI to PEE Mode: External Crystal = 8 MHz, Bus Frequency = 8 MHz
- 8.5.3 Calibrating the Internal Reference Clock (IRC)
- Chapter 9 Analog Comparator (S08ACMPV3)
- Chapter 10 Analog-to-Digital Converter (S08ADC12V1)
- 10.1 Introduction
- 10.2 External Signal Description
- 10.3 Register Definition
- 10.3.1 Status and Control Register 1 (ADCSC1)
- 10.3.2 Status and Control Register 2 (ADCSC2)
- 10.3.3 Data Result High Register (ADCRH)
- 10.3.4 Data Result Low Register (ADCRL)
- 10.3.5 Compare Value High Register (ADCCVH)
- 10.3.6 Compare Value Low Register (ADCCVL)
- 10.3.7 Configuration Register (ADCCFG)
- 10.3.8 Pin Control 1 Register (APCTL1)
- 10.3.9 Pin Control 2 Register (APCTL2)
- 10.3.10 Pin Control 3 Register (APCTL3)
- 10.4 Functional Description
- 10.5 Initialization Information
- 10.6 Application Information
- Chapter 11 Inter-Integrated Circuit (S08IICV2)
- Chapter 12 Serial Peripheral Interface (S08SPIV3)
- Chapter 13 Serial Communications Interface (S08SCIV4)
- Chapter 14 Real-Time Counter (S08RTCV1)
- Chapter 15 Timer Pulse-Width Modulator (S08TPMV3)
- Chapter 16 Development Support
- 16.1 Introduction
- 16.2 Background Debug Controller (BDC)
- 16.3 On-Chip Debug System (DBG)
- 16.4 Register Definition
- 16.4.1 BDC Registers and Control Bits
- 16.4.2 System Background Debug Force Reset Register (SBDFR)
- 16.4.3 DBG Registers and Control Bits
- 16.4.3.1 Debug Comparator A High Register (DBGCAH)
- 16.4.3.2 Debug Comparator A Low Register (DBGCAL)
- 16.4.3.3 Debug Comparator B High Register (DBGCBH)
- 16.4.3.4 Debug Comparator B Low Register (DBGCBL)
- 16.4.3.5 Debug FIFO High Register (DBGFH)
- 16.4.3.6 Debug FIFO Low Register (DBGFL)
- 16.4.3.7 Debug Control Register (DBGC)
- 16.4.3.8 Debug Trigger Register (DBGT)
- 16.4.3.9 Debug Status Register (DBGS)
- Appendix A Electrical Characteristics
- A.1 Introduction
- A.2 Parameter Classification
- A.3 Absolute Maximum Ratings
- A.4 Thermal Characteristics
- A.5 ESD Protection and Latch-Up Immunity
- A.6 DC Characteristics
- A.7 Supply Current Characteristics
- A.8 Analog Comparator (ACMP) Electricals
- A.9 ADC Characteristics
- A.10 External Oscillator (XOSC) Characteristics
- A.11 MCG Specifications
- A.12 AC Characteristics
- A.13 Flash and EEPROM
- A.14 EMC Performance
- Appendix B Timer Pulse-Width Modulator (TPMV2)
- Appendix C Ordering Information and Mechanical Drawings

Chapter 10 Analog-to-Digital Converter (S08ADC12V1)
MC9S08DN60 Series Data Sheet, Rev 3
192 Freescale Semiconductor
For 12-bit conversions the code transitions only after the full code width is present, so the quantization
error is −1 lsb to 0 lsb and the code width of each step is 1 lsb.
10.6.2.5 Linearity Errors
The ADC may also exhibit non-linearity of several forms. Every effort has been made to reduce these
errors but the system should be aware of them because they affect overall accuracy. These errors are:
• Zero-scale error (E
ZS
) (sometimes called offset) — This error is defined as the difference between
the actual code width of the first conversion and the ideal code width (1/2 lsb in 8-bit or 10-bit
modes and 1 lsb in 12-bit mode). If the first conversion is 0x001, the difference between the actual
0x001 code width and its ideal (1 lsb) is used.
• Full-scale error (E
FS
) — This error is defined as the difference between the actual code width of
the last conversion and the ideal code width (1.5 lsb in 8-bit or 10-bit modes and 1
LSB in 12-bit
mode). If the last conversion is 0x3FE, the difference between the actual 0x3FE code width and its
ideal (1
LSB) is used.
• Differential non-linearity (DNL) — This error is defined as the worst-case difference between the
actual code width and the ideal code width for all conversions.
• Integral non-linearity (INL) — This error is defined as the highest-value the (absolute value of the)
running sum of DNL achieves. More simply, this is the worst-case difference of the actual
transition voltage to a given code and its corresponding ideal transition voltage, for all codes.
• Total unadjusted error (TUE) — This error is defined as the difference between the actual transfer
function and the ideal straight-line transfer function and includes all forms of error.
10.6.2.6 Code Jitter, Non-Monotonicity, and Missing Codes
Analog-to-digital converters are susceptible to three special forms of error. These are code jitter,
non-monotonicity, and missing codes.
Code jitter is when, at certain points, a given input voltage converts to one of two values when sampled
repeatedly. Ideally, when the input voltage is infinitesimally smaller than the transition voltage, the
converter yields the lower code (and vice-versa). However, even small amounts of system noise can cause
the converter to be indeterminate (between two codes) for a range of input voltages around the transition
voltage. This range is normally around 1/2lsb in 8-bit or 10-bit mode, or around 2 lsb in 12-bit mode, and
increases with noise.
This error may be reduced by repeatedly sampling the input and averaging the result. Additionally the
techniques discussed in Section 10.6.2.3 reduces this error.
Non-monotonicity is defined as when, except for code jitter, the converter converts to a lower code for a
higher input voltage. Missing codes are those values never converted for any input value.
In 8-bit or 10-bit mode, the ADC is guaranteed to be monotonic and have no missing codes.