Datasheet

LPC408X_7X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 3.1 — 1 September 2014 66 of 138
NXP Semiconductors
LPC408x/7x
32-bit ARM Cortex-M4 microcontroller
The I
2
S-bus specification defines a 3-wire serial bus using one data line, one clock line,
and one word select signal. The basic I
2
S connection has one master, which is always the
master, and one slave. The I
2
S interface on the LPC408x/7x provides a separate transmit
and receive channel, each of which can operate as either a master or a slave.
7.26.1 Features
The interface has separate input/output channels each of which can operate in master
or slave mode.
Capable of handling 8-bit, 16-bit, and 32-bit word sizes.
Mono and stereo audio data supported.
The sampling frequency can range from 16 kHz to 48 kHz (16, 22.05, 32, 44.1,
48) kHz.
Configurable word select period in master mode (separately for I
2
S input and output).
Two 8 word FIFO data buffers are provided, one for transmit and one for receive.
Generates interrupt requests when buffer levels cross a programmable boundary.
Two DMA requests, controlled by programmable buffer levels. These are connected
to the GPDMA block.
Controls include reset, stop and mute options separately for I
2
S input and I
2
S output.
7.27 CAN controller and acceptance filters
The LPC408x/7x contain one CAN controller with two channels.
The Controller Area Network (CAN) is a serial communications protocol which efficiently
supports distributed real-time control with a very high level of security. Its domain of
application ranges from high-speed networks to low cost multiplex wiring.
The CAN block is intended to support multiple CAN buses simultaneously, allowing the
device to be used as a gateway, switch, or router between two of CAN buses in industrial
or automotive applications.
Each CAN controller has a register structure similar to the NXP SJA1000 and the PeliCAN
Library block, but the 8-bit registers of those devices have been combined in 32-bit words
to allow simultaneous access in the ARM environment. The main operational difference is
that the recognition of received Identifiers, known in CAN terminology as Acceptance
Filtering, has been removed from the CAN controllers and centralized in a global
Acceptance Filter.
7.27.1 Features
Dual-channel CAN controller and bus.
Data rates to 1 Mbit/s on each bus.
32-bit register and RAM access.
Compatible with CAN specification 2.0B, ISO 11898-1.
Global Acceptance Filter recognizes 11-bit and 29-bit receive identifiers for all CAN
buses.
Acceptance Filter can provide FullCAN-style automatic reception for selected
Standard Identifiers.