Datasheet

LPC11U3X All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2014. All rights reserved.
Product data sheet Rev. 2.2 — 11 March 2014 17 of 77
NXP Semiconductors
LPC11U3x
32-bit ARM Cortex-M0 microcontroller
7. Functional description
7.1 On-chip flash programming memory
The LPC11U3x contain up to 128 kB on-chip flash program memory. The flash can be
programmed using In-System Programming (ISP) or In-Application Programming (IAP)
via the on-chip boot loader software.
The flash memory is divided into 4 kB sectors with each sector consisting of 16 pages.
Individual pages can be erased using the IAP erase page command.
7.2 EEPROM
The LPC11U3x contain 4 kB of on-chip byte-erasable and byte-programmable EEPROM
data memory. The EEPROM can be programmed using In-Application Programming (IAP)
via the on-chip boot loader software.
7.3 SRAM
The LPC11U3x contain a total of 8 kB, 10 kB, or 12 kB on-chip static RAM memory.
On the LPC11U37HFBD64/401, the 2 kB SRAM1 region at location 0x2000 0000 to
0x2000 07FFF is used for the I/O Handler software library. Do not use this memory
location for data or other user code.
7.4 On-chip ROM
The on-chip ROM contains the boot loader and the following Application Programming
Interfaces (APIs):
In-System Programming (ISP) and In-Application Programming (IAP) support for flash
including IAP erase page command.
IAP support for EEPROM
USB API
Power profiles for configuring power consumption and PLL settings
32-bit integer division routines
7.5 Memory map
The LPC11U3x incorporates several distinct memory regions, shown in the following
figures. Figure 6
shows the overall map of the entire address space from the user
program viewpoint following reset. The interrupt vector area supports address remapping.
The AHB (Advanced High-performance Bus) peripheral area is 2 MB in size and is divided
to allow for up to 128 peripherals. The APB (Advanced Peripheral Bus) peripheral area is
512 kB in size and is divided to allow for up to 32 peripherals. Each peripheral of either
type is allocated 16 kB of space. This addressing scheme allows simplifying the address
decoding for each peripheral.