Network Card User Manual
Table Of Contents
- SCXI-1121 User Manual
- Support
- Important Information
- Contents
- About This Manual
- Chapter 1 Introduction
- Chapter 2 Configuration and Installation
- Chapter 3 Theory of Operation
- Chapter 4 Register Descriptions
- Chapter 5 Programming
- Appendix A Specifications
- Appendix B Rear Signal Connector
- Appendix C SCXIbus Connector
- Appendix D SCXI-1121 Front Connector
- Appendix E SCXI-1121 Cabling
- Appendix F Revision A and B Photo and Parts Locator Diagrams
- Appendix G Technical Support Resources
- Glossary
- Index
- Figures
- Figure 2-1. SCXI-1121 General Parts Locator Diagram
- Figure 2-2. SCXI-1121 Detailed Parts Locator Diagram
- Figure 2-3. SCXI-1121 Front Connector Pin Assignment
- Figure 2-4. Ground-Referenced Signal Connection with High Common-Mode Voltage
- Figure 2-5. Floating Signal Connection Referenced to Chassis Ground for Better Signal-to-Noise Ratio
- Figure 2-6. Floating AC-Coupled Signal Connection
- Figure 2-7. AC-Coupled Signal Connection with High Common-Mode Voltage
- Figure 2-8. Assembling and Mounting the SCXI-1330 Connector-and-Shell Assembly
- Figure 2-9. Nulling Circuit
- Figure 2-10. Shunt Circuit
- Figure 2-11. SCXI-1320 Parts Locator Diagram
- Figure 2-12. SCXI-1328 Parts Locator Diagram
- Figure 2-13. SCXI-1321 Parts Locator Diagram
- Figure 2-14. SCXI-1121 Rear Signal Connector Pin Assignment
- Figure 2-15. SCANCLK Timing Requirements
- Figure 2-16. Slot-Select Timing Diagram
- Figure 2-17. Serial Data Timing Diagram
- Figure 2-18. Configuration Register Write Timing Diagram
- Figure 2-19. SCXI-1121 Module ID Register Timing Diagram
- Figure 3-1. SCXI-1121 Block Diagram
- Figure 3-2. SCXIbus Connector Pin Assignment
- Figure 3-3. Digital Interface Circuitry Block Diagram
- Figure 3-4. SCXI-1121 Digital Control
- Figure 3-5. Analog Input Block Diagram
- Figure 3-6. Analog Output Circuitry
- Figure 3-7. Single-Module Parallel Scanning
- Figure 3-8. Single-Module Multiplexed Scanning (Direct)
- Figure 3-9. Single-Module Multiplexed Scanning (Indirect)
- Figure 3-10. Multiple-Module Multiplexed Scanning
- Figure 3-11. Multiple-Chassis Scanning
- Figure B-1. SCXI-1121 Rear Signal Connector Pin Assignment
- Figure C-1. SCXIbus Connector Pin Assignment
- Figure D-1. SCXI-1121 Front Connector Pin Assignment
- Figure E-1. SCXI-1340 Installation
- Figure E-2. SCXI-1180 Rear Connections
- Figure E-3. SCXI-1180 Front Panel Installation
- Figure E-4. Cover Removal
- Figure F-1. Revision A and B SCXI-1121 Signal Conditioning Module
- Figure F-2. Revision A and B SCXI-1121 General Parts Locator Diagram
- Figure F-3. Revision A and B SCXI-1121 Detailed Parts Locator Diagram
- Tables
- Table 2-1. Digital Signal Connections, Jumper Settings
- Table 2-2. Jumper W33 Settings
- Table 2-3. Gain Jumper Allocation
- Table 2-4. Gain Jumper Positions
- Table 2-5. Filter Jumper Allocation
- Table 2-6. Voltage and Current Mode Excitation Jumper Setup
- Table 2-7. Maximum Load per Excitation Channel
- Table 2-8. Excitation Level Jumper Selection
- Table 2-9. Completion Network Jumpers
- Table 2-10. Trimmer Potentiometer and Corresponding Channel
- Table 2-11. Nulling Resistors and Corresponding Channel
- Table 2-12. Jumper Settings of the Nulling Circuits
- Table 2-13. Jumper Settings on the SCXI-1320 Terminal Block
- Table 2-14. Jumper Settings on the SCXI-1328 Terminal Block
- Table 2-15. Jumper Settings on the SCXI-1321 Terminal Block
- Table 2-16. SCXIbus to SCXI-1121 Rear Signal Connector to Data Acquisition Board Pin Equivalences
- Table 3-1. SCXIbus Equivalents for the Rear Signal Connector
- Table 3-2. Calibration Potentiometer Reference Designators
- Table 5-1. SCXI-1121 Rear Signal Connector Pin Equivalences
- Table E-1. SCXI-1121 and MIO-16 Pinout Equivalences
- Table E-2. SCXI-1341 and SCXI-1344 Pin Translations
- Table E-3. SCXI-1342 Pin Translations
- Table E-4. SCXI-1343 Pin Connections
Chapter 5 Programming
SCXI-1121 User Manual 5-10 www.natinst.com
To program the MIO board to take N samples per data acquisition board
scan list entry, perform the following additional programming steps at the
end of the Enable the Scanning Data Acquisition Operation section in the
appropriate data acquisition board user manual:
1. Write FF01 to the Am9513 Command Register to select Counter 1
Mode Register.
2. Write 0325 (hex) to the Am9513 Data Register to store Counter 1
Mode Value for most MIO boards. Write 1325 (hex) to the Am9513
Data Register to store Counter 1 Mode Value for the AT-MIO-16F-5,
AT-MIO-64F-5, and AT-MIO-16X boards.
3. Write FF09 to the Am9513 Command Register to select Counter 1
Load Register.
4. Write the number of samples to be taken per scan list entry (2 to
65,535) to the Am9513 Data Register to load Counter 1.
5. Write FF41 to the Am9513 Command Register to load Counter 1.
6. Write FFF1 to the Am9513 Command Register to step Counter 1.
7. Write FF21 to the Am9513 Command Register to arm Counter 1.
8. Set the SCANDIV bit in Command Register 1.
2. Module Programming
This section describes the programming steps for various scanning
possibilities. For all the bit patterns in this section, S
c
signifies the shunt
calibration bit. If you set this bit to one, the module will be scanned in Shunt
Calibration mode. If you clear this bit to zero, shunt calibration will be
disabled on the module during scanning. When programming a module to
change the shunt calibration mode from disabled to enabled or vice versa,
insert a delay before you make any measurements. If the SCXI-1121 has a
filter setting at 10 kHz, the delay should be at least 1 msec. If the
SCXI-1121 has the filter set at 4 Hz, the delay should be at least 1 sec.
Single-Module Parallel Scanning
In order to perform single-module parallel scanning, you must cable the
SCXI-1121 rear signal connector to a data acquisition board with each
output connected to a different data acquisition board channel. See
Chapter 2, Configuration and Installation, for more information.
To program the SCXI-1121 for single-module parallel scanning, write the
binary pattern
00ScXXX00 XX000000 to the SCXI-1121 Configuration
Register. Notice that this can be the RESET state.