Datasheet

CAUTION: If you operate too close to the thermal limits, the converter may
shut down suddenly without warning. Be sure to thoroughly test your applica-
tion to avoid unplanned thermal shutdown.
Temperature Derating Curves
The graphs in this data sheet illustrate typical operation under a variety of
conditions. The Derating curves show the maximum continuous ambient air
temperature and decreasing maximum output current which is acceptable
under increasing forced airfl ow measured in Linear Feet per Minute (“LFM”).
Note that these are AVERAGE measurements. The converter will accept brief
increases in current or reduced airfl ow as long as the average is not exceeded.
Note that the temperatures are of the ambient airfl ow, not the converter
itself which is obviously running at higher temperature than the outside air.
Also note that very low fl ow rates (below about 25 LFM) are similar to “natural
convection,” that is, not using fan-forced airfl ow.
Murata Power Solutions makes Characterization measurements in a closed
cycle wind tunnel with calibrated airfl ow. We use both thermocouples and an
infrared camera system to observe thermal performance.
CAUTION: If you routinely or accidentally exceed these Derating guidelines,
the converter may have an unplanned Over Temperature shut down. Also, these
graphs are all collected at slightly above Sea Level altitude. Be sure to reduce
the derating for higher density altitude.
Output Current Limiting
Current limiting inception is defi ned as the point at which full power falls below
the rated tolerance. See the Performance/Functional Specifi cations. Note par-
ticularly that the output current may briefl y rise above its rated value in normal
operation as long as the average output power is not exceeded. This enhances
reliability and continued operation of your application. If the output current is
too high, the converter will enter the short circuit condition.
Output Short Circuit Condition
When a converter is in current-limit mode, the output voltage will drop as the
output current demand increases. If the output voltage drops too low (approxi-
mately 98% of nominal output voltage for most models), the PWM controller
will shut down. Following a time-out period, the PWM will restart, causing the
output voltage to begin ramping up to its appropriate value. If the short-circuit
condition persists, another shutdown cycle will initiate. This rapid on/off cycling
is called “hiccup mode”. The hiccup cycling reduces the average output cur-
rent, thereby preventing excessive internal temperatures and/or component
damage. A short circuit can be tolerated indefi nitely.
Remote On/Off Control
The remote On/Off Control can be ordered with either logic type. Please refer to
the Connection Diagram on page 1 for On/Off connections.
Positive logic models are enabled when the On/Off pin is left open or is
pulled high to +Vin with respect to –Vin. Therefore, the On/Off control can be
disconnected if the converter should always be on. Positive-logic devices are
disabled when the On/Off is grounded or brought to within a low voltage (see
Specifi cations) with respect to –Vin.
Negative logic devices are on (enabled) when the On/Off pin is left open or
brought to within a low voltage (see Specifi cations) with respect to –Vin. The
device is off (disabled) when the On/Off is pulled high (see Specifi cations) with
respect to –Vin.
Dynamic control of the On/Off function must sink appropriate signal current
when brought low and withstand appropriate voltage when brought high.
Be aware too that there is a fi nite time in milliseconds (see Specifi cations)
between the time of On/Off Control activation and stable, regulated output. This
time will vary slightly with output load type and current and input conditions.
Output Capacitive Load
These converters do not require external capacitance added to achieve rated
specifi cations. Users should only consider adding capacitance to reduce
switching noise and/or to handle spike current load steps. Install only enough
capacitance to achieve your noise and surge response objectives. Excess
external capacitance may cause regulation problems and possible oscillation
or instability. Proper wiring of the Sense inputs will improve these factors under
capacitive load.
The maximum rated output capacitance and ESR specifi cation is given for a
capacitor installed immediately adjacent to the converter. Any extended output
wiring, smaller wire gauge or less ground plane may tolerate somewhat higher
capacitance. Also, capacitors with higher ESR may use a larger capacitance.
Pre-Biased Startup
Some sections have external power already partially applied (possibly because
of earlier power sequencing) before POL power up. Or leakage power is pres-
ent so that the DC/DC converter must power up into an existing output voltage.
This power may either be stored in an external bypass capacitor or supplied by
an active source. These converters include a pre-bias startup mode to prevent
initialization problems.
This “pre-biased” condition can also occur with some types of program-
mable logic or because of blocking diode leakage or small currents passed
through forward biased ESD diodes. This feature is variously called “mono-
tonic” because the voltage does not decay or produce a negative transient
once the input power is applied and startup begins.
C1
C1 = 1µF
C2 = 10µF
LOAD 2-3 INCHES (51-76mm) FROM MODULE
C2
R
LOAD
SCOPE
+OUTPUT
+SENSE
-OUTPUT
Figure 3. Measuring Output Ripple and Noise (PARD)
OKX-T/3-D12 Series
Adjustable 3-Amp SIP Non-Isolated DC/DC Converters
MDC_OKX-T/3-D12 Series.A01 Page 14 of 15
www.murata-ps.com/support