Datasheet
»
»
º
«
«
ª
t
max
ESR
ESR
N
and
N
C
C
min
t
.
x If the
ESR
value is
min
ESRESR
the capacitance value should be
ESR
ESR
CC
min
min
t .
For a total capacitance outside the above stated range or capacitors that do
not follow the stated above requirements above a re-design of the control
loop parameters will be necessary for robust dynamic operation and
stability.
Control Loop
The product uses a voltage-mode synchronous buck controller with a fixed
frequency PWM scheme. Although the product uses a digital control loop, it
operates much like a traditional analog PWM controller. As in the analog
controller case, the control loop compares the output voltage to the desired
voltage reference and compensation is added to keep the loop stable and
fast. The resulting error signal is used to drive the PWM logic. Instead of
using external resistors and capacitors required with traditional analog
control loops, the product uses a digital Proportional-Integral-Derivative
(PID) compensator in the control loop. The characteristics of the control
loop is configured by setting PID compensation parameters. These PID
settings can be reconfigured using the PMBus interface.
Dy
namic Loop Compensation (DLC)
The DLC feature might in some documents be referred to as “Auto
Compensation” or “Auto Tuning” feature.
The DLC feature measures the characteristics of the power train and
calculates the proper compensator PID coefficients.
The default configuration is that once the output voltage ramp up has
completed, the DLC algorithm will begin and a new optimized
compensator solution (PID setting) will be found and implemented. The
DLC algorithm typically takes between 50 ms and 200 ms to complete.
By the PMBus command AUTO_COMP_CONFIG the user may select
between several different modes of operation:
x Disable
x Autocomp once, will run DLC algorithm each time the output is
enabled (default configuration)
x Autocomp every second will initiate a new DLC algorithm each 1
second
x Autocomp every minute will initiate a new DLC algorithm every
minute.
The DLC can also be configured with Auto Comp Gain Control. This scales
the DLC results to allow a trade-off between transient response and
steady-state duty cycle jitter. A setting of 100% will provide the fastest
transient response while a setting of 10% will produce the lowest jitter.
The default is 50%.
Changing DLC and PID Setting
Some caution must be considered while DLC is enabled and when it is
changed from enabled or disabled.
When operating, the controller IC uses the settings loaded in its (volatile)
RAM memory. When the input power is applied the RAM settings are
retrieved from the pin-strap resistors and the two non-volatile memories
(DEFAULT and USER). The sequence is described in the “Initialization
Procedure” section.
When DLC is enabled:
When DLC is enabled, the normal sequence (after input power has been
applied) that a value stored in the user non-volatile memory overwrites any
previously loaded value does not apply for the PID setting (stored in the
PID_TAPS register). The PID setting in the user non-volatile memory is
ignored and a non-configurable default PID setting is loaded to RAM to act
as a safe starting value for the DLC. Once the output has been enabled and
the DLC algorithm has found a new optimized PID setting, it will be loaded
in RAM and used by the control loop.
When saving changes to the user non-volatile memory, all changes made
to the content of RAM will be saved. This also includes the default PID
setting (loaded to RAM to act as a safe starting value) or the PID setting
changed by the DLC algorithm after enabling output. The result is that as
long as DLC is enabled the PID setting in the user non-volatile memory is
ignored, but it might accidentally get overwritten.
When changing DLC from disabled to enabled:
A non-configurable default PID setting is loaded to RAM to act as a safe
starting value for the DLC (same as above).
When changing DLC from enabled to disabled:
When changing DLC from enabled to disabled, the PID setting in the user
non-volatile memory will be loaded to RAM. Any new optimized PID setting
in RAM will be lost, if not first stored to the user non-volatile memory.
When DLC is disabled:
When DLC is disabled and input power has been applied, the PID setting in
the user non-volatile memory will be loaded to RAM and used in the control
loop.
The original PID setting in the user non-volatile memory is quite slow and
not recommended for optimal performance. If DLC is disabled it is
recommended to either:
1. Use the DLC to find optimized PID setting.
2. Use Ericsson Power Designer to find appropriate PID setting.
3. Use Universal PID as defined below.
The Universal PID setting (taps) is:
The DLC can also be configured to run once only after the first ramp up
(after input power have been applied) and to use that temporary stored PID
settings in all subsequent ramps. If input power is cycled a new DLC
algorithm will be performed after the first ramp up. The default setting is
however to run the DLC algorithm after every ramp up.
The DLC algorithm can also be initiated manually by sending the
AUTO_COMP_CONTROL command.
OKDx-T/50-W12-C
50A Digital PoL DC-DC Converter Series
MDC_OKDx-T/50-W12-C.A04 Page 21 of 41
www.murata-ps.com/support