Use and Care Manual
Table Of Contents
- Foreword
- Safety Notice
- CONTENTS
- Safety Notice on Maintenance
- Safety Notice on Operation
- 1 Product Introduction
- NOTE: 1 Ton =12000Btu/h = 3.517kW 1.2 Electrical Parameters
- 2 Control
- 3 Troubleshooting
- 3.1 Wiring Diagrams
- 3.2 PCB Layout
- 3.3 Error Code
- 3.4 Troubleshooting
- 3.4.1 “E1” Compressor High Pressure Protection
- 3.4.2 “E3” Compressor Low-pressure Protection, Refrigerant Shortage Protection, Refrigerant Recovery Mode
- 3.4.3 “E4” Compressor Air Discharge High-temperature Protection
- 3.4.4 “F2” Condenser Temperature Sensor Error
- 3.4.5 “F3” Outdoor Ambient Temperature Sensor Error
- 3.4.6 “F4” Discharge Temperature Sensor Error
- 3.4.7 “F6” ODU Tube Temperature Sensor Error
- 3.4.8“EE” ODU Memory Chip Error
- 3.4.9 “H4” Overload
- 3.4.10 “H5” IPM Protection
- 3.4.11 “H6” DC Fan Error
- 3.4.12 “H7” Driver Out-of-Step Protection
- 3.4.13 “HC” PFC Protection
- 3.4.14 “Lc” Startup Failure
- 3.4.15 “P0” Driver Reset Protection
- 3.4.16 “P5” Over-Current Protection
- 3.4.17 “P6” Master Control and Driver Communication Error
- 3.4.18 “P7” Driver Module Sensor Error
- 3.4.19 “P8” Driver Module High Temperature Protection
- 3.4.20 “PA” AC Current Protection
- 3.4.21 “Pc” Driver Current Error
- 3.4.22 “PL” Bus Low-Voltage Protection
- 3.4.23 “PH” Bus High-Voltage Protection
- 3.4.24 “PU” Charge Loop Error
- 3.4.25 “ee” Drive Memory Chip Error
- 3.5 Failures Not Caused by Errors
- 4 Maintenance
- Appendices
- 1 Resistance/Temperature Lists of Temperature Sensors
- 1.1 Voltage List of 15 KΩ Temperature Sensors (including ODU temperature sensors)
- 1.2 Voltage List of 20 KΩ Pipeline Temperature Sensors (including temperature sensors for defroster, IDU and ODU pipes)
- 1.3 Voltage List of 50 KΩ Discharge Temperature Sensors (including discharge air temperature sensor)
- 2 Temperature/Pressure List of Refrigerant
- 3 Operation Tools
MRCOOL DC INVERTER COOLING ONLY CONDENSING UNIT
51
And verify if the pressure gauge at the low pressure side of the manifold valve assembly reads -0.1Mpa
(-750mmHg), if not, it indicates there is leak somewhere. Then, close the switch fully and then stop the vacuum
pump.
(6) Wait for 10min to see if the system pressure can remain unchanged. If the pressure increase, there may be
leakage.
(7) Slightly open the liquid valve and let some refrigerant go to the connection pipe to balance the pressure
inside and outside of the connection pipe, so that air will not come into the connection pipe when removing
the hose. Notice that the gas and liquid valve can be opened fully only after the manifold valve assembly is
removed.
(8) Place back the caps of the liquid valve, gas valve and also the service port.
NOTICE:
For large-size units, there are maintenance ports for liquid valve and gas valve. During evacuation, you may
connect the two hoses of the branch valve assembly to the maintenance ports to speed up the evacuation.
Refrigerant should be reclaimed into the appropriate storage tank. System should use oxygen-free nitrogen
purging to ensure safety. This process may need to repeat several times. Do not use compressed air or oxygen in
this process.










