User's Manual
Table Of Contents
- 1 Introduction
- 2 Product Description
- 2.1 TECHNOLOGY AND BENEFITS
- 2.2 APPLICATIONS
- 2.3 CONFIGURATION OPTIONS – RF, IP, DFS
- 2.4 POWER AND GROUNDING
- 2.5 ADMINISTRATION SYSTEMS
- 2.6 SPECIFICATIONS
- 2.6.1 Radio specifications (common to all formats)
- 2.6.2 Specifications for PMP 430 SM radio with integrated antenna
- 2.6.3 Specifications for PMP 430 SM radio with optional LENS
- 2.6.4 Specifications for PMP 400 and PTP 200 radio with integrated antenna
- 2.6.5 Specification for PMP 400 and 430 connectorized radio
- 2.6.6 Specifications for PMP 400/430 kitted, connectorized radio (antenna included)
- 2.7 PERFORMANCE
- 3 Planning
- 4 Configuring
- 4.1 LINK OPERATION – 1X/2X/3X
- 4.2 TRANSMITTER OUTPUT POWER (AND NO JITTER)
- 4.3 DOWNLINK DATA %, RANGE, AND CONTROL SLOTS
- 4.4 DFS AND REGULATORY PARAMETERS FOR 5.8 & 5.4 GHZ RADIOS
- 4.5 NET ANTENNA GAIN FIELD
- 4.6 NETWORK CONTROL PARAMETERS
- 4.7 FORWARD ERROR CORRECTION
- 4.8 CYCLIC PREFIX (CONFIGURABLE ONLY ON PTP 200 BH & PMP 430 AP/SM)
- 5 Installation
- 6 Regulatory and Legal Notices
- 6.1 IMPORTANT NOTE ON MODIFICATIONS
- 6.2 NATIONAL AND REGIONAL REGULATORY NOTICES
- 6.2.1 U.S. Federal Communication Commission (FCC) Notification
- 6.2.2 Industry Canada (IC) Notification
- 6.2.3 Regulatory Requirements for CEPT Member States (www.cept.org)
- 6.2.4 Equipment Disposal
- 6.2.5 EU Declaration of Conformity for RoHS Compliance
- 6.2.6 Luxembourg Notification
- 6.2.7 Czech Republic Notification
- 6.2.8 Greece Notification
- 6.2.9 Brazil Notification
- 6.2.10 Labeling and Disclosure Table for China
- 6.3 EXPOSURE SEPARATION DISTANCES
- 6.4 LEGAL NOTICES
- 6.5 LIMIT OF LIABILITY
PMP 400/430 and PTP 200 Series Canopy User Guide
Supplement
Issue 4 0 – DRAFT 6 November 2009 Page 39 of 64
Region Code
1
Frequency AP SM
Center Channel
Frequencies Available
2
(MHz)
consistent with your country’s regulatory requirements.
2. In some countries and regions, 5600 MHz to 5650 MHz is “notched” out to meet
requirements to not transmit in weather radar frequencies.
3. FCC/IC indicates compliance with FCC Report and Order 03-287 and Industry
Canada requirements.
4. ETSI DFS indicates compliance with ETSI EN 301 893 v1.3.1
5. ETSI DFS indicates compliance with ETSI EN 302 502 v1.2.1 2008
After an AP or BHM with DFS boots it performs a channel availability check on its main carrier
frequency for 1 minute, monitoring for the radar signature without transmitting. If no radar
signature is detected during this minute, the module then proceeds to normal beacon transmit
mode. If it does detect a radar signature, the frequency is marked for a 30 minute non-occupancy
period, and the module moves to its 1
st
alternate carrier frequency. The AP/BHM continues this
behavior through its 2nd alternate frequency if needed and then waits until the first frequency
ends the 30 minute non-occupancy period. While operating, if the AP/BHM detects a weather
radar signature it marks the current carrier frequency for a 30 minute non-occupancy period and
moves to check the next-in-line carrier frequency.
An SM/BHS does not begin transmission until it detects a beacon from an AP/BHM. If APs/BHMs
are not transmitting, SMs/BHSs will be silent.
The FCC and IC require DFS only on APs/BHMs. Europe applies the ETSI specification to both
APs/BHMs and SMs/BHSs, while Brazil applies it only to AP/BHMs. In the ETSI case, when an
SM/BHS boots, it scans to find a Canopy beacon from a AP/BHM. If an AP/BHM is found, the
SM/BHS performs a channel availability check on that frequency for 1 minute, monitoring for the
radar signature, without transmitting. A DFS decision is made based on the following:
• If no radar pulse is detected during this 1 minute, the SM/BHS proceeds through
normal steps to register to an AP/BHM.
• If the SM/BHS does detect radar, it locks out that frequency for 30 minutes and
continues scanning other frequencies in its scan list.
Note, after an SM with DFS has seen a radar signature on a frequency and locked out that
frequency, it may connect to a different AP if color codes, AP transmitting frequencies, and SM
scanned frequencies support that connection.
BHSs would not be expected to connect to a different BHM, as backhaul links should be
configured using color codes and authentication to ensure a BHS only connects with its intended
BHM.
To simplify operation and ensure compliance, an SM/BHS takes on the DFS type of the AP/BHM
to which it registers. For example, when an SM in Europe registers to an AP with the Region
Code set to “Europe”, that SM will use ETSI DFS, no matter what its Region Code is set to, even
if its Region Code is set to “None”. Note, the operator should still configure the Region Code in
the SM correctly, as future releases may use the Region Code for additional region-specific
options.