Car Amplifier User Manual
Table Of Contents
- Safety Instructions
- COMPLIANCE WITH EC DIRECTIVES
- CONFORMANCE WITH UL/C-UL STANDARD
- <
> - CONTENTS
- Optional Servo Motor Instruction Manual CONTENTS
- 1. FUNCTIONS AND CONFIGURATION
- 2. INSTALLATION
- 3. SIGNALS AND WIRING
- 3.1 Standard connection example
- 3.2 Internal connection diagram of servo amplifier
- 3.3 I/O signals
- 3.4 Detailed description of the signals
- 3.5 Alarm occurrence timing chart
- 3.6 Interfaces
- 3.7 Input power supply circuit
- 3.8 Connection of servo amplifier and servo motor
- 3.9 Servo motor with electromagnetic brake
- 3.10 Grounding
- 3.11 Servo amplifier terminal block (TE2) wiring method
- 3.12 Instructions for the 3M connector
- 3.13 Power line circuit of the MR-J2S-11KA to MR-J2S-22KA
- 4. OPERATION
- 5. PARAMETERS
- 6. DISPLAY AND OPERATION
- 7. GENERAL GAIN ADJUSTMENT
- 8. SPECIAL ADJUSTMENT FUNCTIONS
- 9. INSPECTION
- 10. TROUBLESHOOTING
- 11. OUTLINE DIMENSION DRAWINGS
- 12. CHARACTERISTICS
- 13. OPTIONS AND AUXILIARY EQUIPMENT
- 13.1 Options
- 13.1.1 Regenerative brake options
- 13.1.2 Brake unit
- 13.1.3 Power regeneration converter
- 13.1.4 External dynamic brake
- 13.1.5 Cables and connectors
- 13.1.6 Junction terminal block (MR-TB20)
- 13.1.7 Maintenance junction card (MR-J2CN3TM)
- 13.1.8 Battery (MR-BAT, A6BAT)
- 13.1.9 MR Configurator (Servo configurations software)
- 13.1.10 Power regeneration common converter
- 13.1.11 Heat sink outside mounting attachment (MR-JACN)
- 13.2 Auxiliary equipment
- 13.2.1 Recommended wires
- 13.2.2 No-fuse breakers, fuses, magnetic contactors
- 13.2.3 Power factor improving reactors
- 13.2.4 Power factor improving DC reactors
- 13.2.5 Relays
- 13.2.6 Surge absorbers
- 13.2.7 Noise reduction techniques
- 13.2.8 Leakage current breaker
- 13.2.9 EMC filter
- 13.2.10 Setting potentiometers for analog inputs
- 13.1 Options
- 14. COMMUNICATION FUNCTIONS
- 14.1 Configuration
- 14.2 Communication specifications
- 14.3 Protocol
- 14.4 Character codes
- 14.5 Error codes
- 14.6 Checksum
- 14.7 Time-out operation
- 14.8 Retry operation
- 14.9 Initialization
- 14.10 Communication procedure example
- 14.11 Command and data No. list
- 14.12 Detailed explanations of commands
- 14.12.1 Data processing
- 14.12.2 Status display
- 14.12.3 Parameter
- 14.12.4 External I/O pin statuses (DIO diagnosis)
- 14.12.5 Disable/enable of external I/O signals (DIO)
- 14.12.6 External input signal ON/OFF (test operation)
- 14.12.7 Test operation mode
- 14.12.8 Output signal pin ON/OFF output signal (DO) forced output
- 14.12.9 Alarm history
- 14.12.10 Current alarm
- 14.12.11 Other commands
- 15. ABSOLUTE POSITION DETECTION SYSTEM
- 15.1 Outline
- 15.2 Specifications
- 15.3 Battery installation procedure
- 15.4 Standard connection diagram
- 15.5 Signal explanation
- 15.6 Startup procedure
- 15.7 Absolute position data transfer protocol
- 15.8 Examples of use
- 15.9 Confirmation of absolute position detection data
- 15.10 Absolute position data transfer errors
- Appendix
- REVISIONS

15 - 61
15. ABSOLUTE POSITION DETECTION SYSTEM
6) Writing absolute position data to A1SD75
The slot number and buffer address of the X-axis current value changing area are changed from
[DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154
D3 K1] 14). When the current value is changed
in the A1SD75, the current feed value is changed at the start of positioning data No.9003.
Therefore, the starting program for positioning data No.9003 15) is added.
7) X-axis data set type home position return program
The slot numbers and buffer addresses of the X-axis home position address changing area are
changed from [DTOP H0001 K7912 D9 K1] to [DTOP H0000 K72
D9 K1] and from [DFROP
H0001 K7912 D9 K1] to [DFROP H0000 K72 D9 K1] 17).
The slot number and buffer address of the X-axis current value changing area are changed from
[DTOP H0001 K41 D3 K1] to [DTOP H0000 K1154
D3 K1] 18). When the current value is changed
in the A1SD75, the current feed value is changed at the start of positioning data No.9003.
Therefore, the starting program for positioning data No.9003 19) is added.
8) Y-axis sequence program, Y-axis data set type home position return program.
The slot numbers and buffer addresses are changed as indicated by 20).
9) Writing absolute position data to A1SD75
The A1SD75 allows the current position to be changed only when the ready (RD) of the Servo
amplifier is on. Therefore, if the CPU scan is fast, the program for A1SD71 may change the
current position before the ready (RD) switches on. 7) is added because the current position must
be changed after it has been confirmed that the drive unit ready (RD) of the A1SD75 (D75) has
switched on/off.
10) ABS coordinate error detection
As the A1SD75 can handle the negative-polarity coordinate position that the A1SD71 could
not handle, the program for ABS coordinate error detection is deleted. 13)
11) Dog type home position return program
Due to the changes in wiring described in (4), (a), 4) of this section, the program for
outputting the clear (CR) (Y35) after completion of a home position return is required. 16)